
EUROGRAPHICS 2018 / J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Track Xplorer: A System for
Visual Analysis of Sensor-based Motor Activity Predictions

Marco Cavallo1 and Çağatay Demiralp1

1IBM Research

Abstract

With the rapid commoditization of wearable sensors, detecting human movements from sensor datasets has become increasingly common
over a wide range of applications. To detect activities, data scientists iteratively experiment with different classifiers before deciding
which model to deploy. Effective reasoning about and comparison of alternative classifiers are crucial in successful model development.
This is, however, inherently difficult in developing classifiers for sensor data, where the intricacy of long temporal sequences, high prediction
frequency, and imprecise labeling make standard evaluation methods relatively ineffective and even misleading.
We introduce Track Xplorer, an interactive visualization system to query, analyze, and compare the predictions of sensor-data classifiers.
Track Xplorer enables users to interactively explore and compare the results of different classifiers, and assess their accuracy with respect
to the ground-truth labels and video. Through integration with a version control system, Track Xplorer supports tracking of models
and their parameters without additional workload on model developers. Track Xplorer also contributes an extensible algebra over track
representations to filter, compose, and compare classification outputs, enabling users to reason effectively about classifier performance.
We apply Track Xplorer in a collaborative project to develop classifiers to detect movements from multisensor data gathered from
Parkinson’s disease patients. We demonstrate how Track Xplorer helps identify early on possible systemic data errors, effectively track
and compare the results of different classifiers, and reason about and pinpoint the causes of misclassifications.

1. Introduction

The extensive diffusion of consumer-level wearable devices has opened
up many possibilities for activity monitoring and analysis. Fitness trackers,
from smart watches to wristbands, are increasingly used by people to
track their daily activities. Similarly, a wide variety of biosensors is
starting to play an important role in continuous outpatient monitoring.
Detecting motor activities (i.e., limb movements) from sensor data and
understanding their normal and abnormal variation has a great potential
to inform and predict the well-being of healthy persons and patients
alike. To this end, developing classifiers that successfully detect different

Track Xplorer

Tuning Training Evaluation

Deployment

Tuning Training Evaluation

Model Development Life Cycle

Debugging
Versioning
Comparison
Selection

Contextual Visual Analysis

…

Figure 1: Improving model development life cycle. Track Xplorer
enhances the comparative evaluation of multiple predictive models
through contextual visual analysis.

types of physical motion from sensor data is critical for the reliability
of insights derived from any downstream analysis.

Classifier development is an iterative process in which data scientists
start with some alternative models and associated hyperparameters, train
the models on a subset of the available data, and then evaluate their
performance on test data. During the evaluation step, data scientists use
aggregate performance metrics such as accuracy score, precision and
recall to establish how well a classifier predicts specific activities. Data
scientists then tune their algorithms and parameters using these insights,
restarting the cycle and iteratively improving their models. Analyzing the
output of predictive models is a crucial step in the life cycle of iterative
model development (Fig. 1). Although aggregate evaluation metrics can
be useful for overall performance assessment and reporting, they don’t
carry sufficient detail to facilitate interpretability and drill-down analysis
needed to debug and fine-tune the models. Aggregate metrics treat
predictions uniformly, hiding differences within them. Researchers have
recently proposed interactive tools (e.g., [ACD∗15,AHH∗14,RAL∗17])
to help evaluate classifier performances both in aggregate and at instance
level, primarily using interactive histograms of instance class probabilities.

When evaluating motor activity classifiers, the inadequacy of aggregate
metrics becomes even more pronounced due to the intricate temporal
nature of data that classifiers operate on. Each activity and its time window
is recognized by considering multiple model predictions computed at
high frequency, and is often validated against labels generated through
manual video annotation. The need to evaluate a classifier’s output against

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

Figure 2: Track Xplorer interface. The main view shows a timeline for a set of stacked linear tracks. A track can represent the sequence of event
predictions generated by a classifier (d, in blue) or the series of annotations used as ground-truth labels (f, in green). Tracks are associated to the
predicted motor activity, to the name of the person who generated the results or labels and to the model version (in case of classifiers). This information
is displayed at the left margin of each track (e), together with four buttons that enable performing track operations. A dedicated protocol track (c)
can be used to easily navigate to regions of interest, while a synchronized video player (g) lets users validate the context of event predictions. Users
can customize the appearance of tracks through a collapsible sidebar on the left (b). A command-line interface (a) lets users run commands from Track
Xplorer’s command set, which also supports the operations of a visual track algebra.

manual labels that are generally affected by human interpretation, goal
and bias further limits the effectiveness of aggregate performance metrics
to convey insights into why one prediction model appears to perform
better than another. Data scientists need tools that would enable them
to drill down to the context of each motor activity prediction to better
interpret the causes of mispredictions. Existing tools using histograms
of instance class probabilities are, however, insufficient for the visual
analysis of activity classifications from sensor-data streams, as they do
not consider the temporal context of predictions.

We introduce a novel visualization system, Track Xplorer (Xplorer
for short), to interactively analyze the results of sensor-data classifiers.
Xplorer enables users to debug and compare multiple classifiers down to
the granularity of a single prediction (instance), providing qualitative and
quantitative means to validate the performance of each model. Xplorer
facilitates the interpretation of classification results in application context
and thus lets data scientists reason about the causes of misclassifications
and improve their predictive models.

Contributions. Our contributions include (1) a novel visualization
system for visual analysis of classification performances on temporal
data, (2) a set of methods to integrate contextual information and model
metadata to support performance analysis, and (3) a visual track algebra
for filtering, composing, analyzing and comparing classification results.

To illustrate the usefulness of our system, we present a use case in
developing predictive models to detect specific motor activities in
individuals with Parkinson’s disease. We study the use of Xplorer through
a group of fourteen participants, data scientists and business managers,
working on the same project. We demonstrate that Xplorer proved
essential in validating and comparing predictive models, reasoning about
the causes of mispredictions, and understanding the trade-offs in the usage
of different sensors—improving the overall predictive-model-development
life cycle. We further observe how the system facilitates discussion
among data scientists and business managers.

We first give a synopsis of prior work, followed by a brief discussion of
our system design. We then provide details on Track Xplorer’s interactions
and visual design along with its track algebra, command-line set and clas-
sification validation support. Next we discuss the use of Track Xplorer in
developing classifiers to detect movement patterns in Parkinson’s disease.
We conclude by summarizing our contributions and offering a take-home.

2. Related Work

Our work is related to earlier research in systems infrastructure for
improving the machine-learning (ML) model development cycle,
interactive analysis of classifier performances, sequential and temporal

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

data query and visualization, and systems that facilitate visual analysis
through algebraic operations.

2.1. Systems Infrastructure for Improving ML Pipeline

The practical success of ML in general and deep learning in particular
has dramatically increased the demand for applying ML models to solve
problems across domains. However, ML model development is iterative
and time-consuming and often relies on trial and error using extensive
engineering skills and large training data that are expensive and difficult
to acquire and maintain [SHG∗15].

Recent database research proposes systems to improve the ML-
modeling life cycle. ModelDB [VSL∗16] stores ML models along with
associated pipelines and parameters, enabling the exploration of these
models through SQL queries. Xplorer’s visual track algebra specializes
in comparative analysis of model predictions and performance and can be
integrated into a SQL-like declarative language. ModelHub [MLDD17]
provides a custom model-versioning system to track models and
a domain-specific language to configure deep networks and their
hyperparameters. Xplorer supports model tracking through integration
with git, which is already used by developers to track the source code
of their models. This avoids the burden and fragmentation of using two
separate version control systems. Xplorer automatically extracts the
metadata (e.g., parameters, training data info, etc.) for a given model
along with its version from the model’s source code in the git repository.

Training-data collection and management are also critical in end-to-end
machine learning. Snorkel [RBER17] supports training-data generation
at scale for ML models using weak supervision through user-defined
labeling functions [RDSW∗16]. DataHub [BCH∗15] supports managing
datasets and their versions over time. Van der Weide et al. [vdWPS∗17] tie
data versioning to ML pipelines, tracking data resulting from intermediate
stages of ML pipelines to reduce the redundancy of computations and
improve their robustness. ProvDB [MCD17] tracks the provenance of
artifacts (e.g., data, scripts, results) from data science experiments using
git and a graph database. Similar to VisTrails [CFS∗06], ModelDB,
ProvDB, and [vdWPS∗17] also use workflows (pipelines) to represent
modeling or analysis processes. However, unlike VisTrails, where users
manually design the workflows, these three tools generate or infer
workflows for users. Xplorer is akin to ProvDB [MCD17] in passively
collecting model metadata. Unlike workflow-based systems, Xplorer
focuses on a specific step in the ML pipeline: analysis of model prediction
and performance. It is not intended to author and manage workflows for
ML models. In this sense, Xplorer can be considered as a microservice
that can be plugged into ML workflow management systems.

2.2. Visual Analysis of Classifier Performance

Researchers have introduced interactive tools, e.g., [RAL∗17,ACD∗15,
AHH∗14], to help data scientists make sense of their classifiers’
performances. Squares [RAL∗17] supplements summary performance
statistics with instance-level distribution information to uncover distinct
characteristics of classifiers with comparable aggregate performance. Sim-
ilarly, ModelTracker [ACD∗15] and Confusion Wheel [AHH∗14] tightly
couple performance with data instances to enable multiscale analysis.

These earlier tools combine histogram visualizations of instance class
probabilities with aggregate metrics. However, the histogram visualizations
of earlier work are not sufficient for drill-down analysis of sensor-data clas-
sifications, as they hide the temporal context of the classifier predictions.
Track Xplorer lets users effectively inspect, compare, combine and reason

about instance classifications while effectively visualizing the temporal
context of these classifications. Xplorer also complements earlier work
on classifier performance analysis by focusing on temporal data classifica-
tions, integrating additional “human soft knowledge” (e.g., activity videos
and expert labels) and introducing a visual algebra over classification
results that enables composable and rigorous performance analysis.

2.3. Sequential Data Visualization and Querying

The visual design of Xplorer is drawn from genomic data browsers
(e.g. [KSF∗02, RTW∗11, SGM∗04, FWBB10]) and multimedia edi-
tors [App17,Ado17], using visual encoding along a linear axis (track) of
data and metadata sequences as the basic unit of representation. Genomic
browsers enable the visualization of molecular sequences from various
sources as aligned linear tracks that can be added, removed and reordered
on demand. Genomic browsers support interactions such as zooming
and panning to enable fine-grained exploration of the data, often encoded
as variable-length horizontal bars. These features are also common in
multimedia editors, where tracks typically represent audio or video
sources, and are shared by many other tools in the temporal and sequential
data visualization literature [PMR∗96,WGGP∗,HOB94,Kar94,BSM04].

To query temporal and sequential data effectively, prior research
also proposes using a new temporal logic [All83], SQL exten-
sions [JS99,SAA∗94], regular expressions [ZDFD15,CvW18], graphical
languages [FKSS06, MLMdO∗13], and visual analogy with comic
strips [JS09,JS10]. DecisionFlow [GS14] introduces a milestone-based
analytics for event sequences, whereas EventPad [CvW18] applies a
regular-expression-based visual language for identifying patterns of
interest. Monroe et al.’s work [MLMdO∗13] focuses instead on the
specification of overlap and absence of interval events.

The primary use of our algebra is to generate new meaningful temporal
sequences from the combination of existing ones through various
operators, instead of matching event sequences of interest. Thus, our
visual track algebra over temporal data-classification results complements
earlier work on query-based selection.

2.4. Visual Analysis and Design Through Algebraic Operations

Earlier data visualization work proposes algebraic operators over data
as well as visual encoding and design variables to formulate and compose
complex hypotheses and visualizations. Polaris [STH02] introduces a
table algebra drawn from Wilkinson’s grammar of graphics [Wil05].
Vega-Lite [SMWH17] uses a composition algebra to construct layered
and small-multiple views of visualizations. invis [DHHH13] provides
an algebraic approach to inspecting RNA sequences represented as linear
tracks, where mutations can be visually aggregated using the logical
operators AND, OR, and NOT. Track Xplorer builds on earlier work and
introduces an algebra that facilitates effectively manipulating, combining,
and comparing track representations of classification results.

3. Track Xplorer

3.1. Design Considerations

Interacting with activity predictions based on sensor data poses a wide
set of design challenges related to temporal and computational scalability.
Running predictive models on large amounts of sensor data can take
several hours and, depending on the sampling rate, can generate many
predictions over time, making interactive analysis difficult. This is
particularly noticeable when classifiers output continuous probability

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

.BSX files
Distributed over

secure channel

Xplorer

Public domainPrivate domain

Analytics Pipeline

Sensor data

Model information
Classification results

Data compression

Database
ssh tunnelling

Webserver

Repository

Code

Figure 3: System design. Our analytics pipeline automatically loads
models from the code repository and generates classification results for
sensor data, storing the output in the database. Classification results
and model metadata are then exported as a compressed (.BSX) file that
Xplorer uses as input. Xplorer optionally supports direct access to the
database through ssh tunneling (shown with blue arrows in the figure
above), avoiding the need for sharing .BSX files.

Figure 4: Data compression. Prediction results adjacent to each other
in time and meeting specific similarity criteria can be aggregated into
a single longer prediction. For each classifier prediction pi, si denotes
its confidence value, ai j its attribute values and ∆t its time distance from
the end of the previous prediction. Compression is performed if these
values do not vary beyond certain thresholds εk from the first prediction.

values over time through a sliding-window approach, which can generate
multiple prediction samples per second.

Our system tackles these issues through automated precomputation
and data compression. In particular, we rely on a set of procedures that
periodically handle accessing the available predictive models, running
them on the right subset of the sensor data, and compressing and storing
their output (Fig. 3). Data scientists are required to include in their
code a standardized set of attributes that hold meta-information about
the nature, version and requirements of a classifier. This information
is complemented by the git version control system, which holds data
about user commits and modifications in the code. An analytics pipeline
checks the code repository for new versions of the models and runs them
when a change is detected, performing the computation according to the
meta-information extracted from each classifier. Results are then stored in
a centralized database together with the classification results. By merging
similar predictions close to each other in time (Fig. 4), we compress
the results and store them in a JSON-based file (.BSX) that can later be
opened from the public, web-based Xplorer user interface.

An important design criterion for our system involves preserving data
confidentiality while allowing easy distribution of classification results.
Since data science projects are often run across groups or companies,

Classifier track
Probability score

Classifier track
Predicted events

Label track
Labeled events

Threshold

Block opacity
encodes confidence

Discrete events

Figure 5: Track definition. A track in Xplorer corresponds to a list of
non-overlapping time periods (“events”). The two track types are based
on the form of the data they represent: classifier tracks and label tracks.
A classifier track contains probability scores associated to each event and
can be visualized either as an area chart or as horizontal bars (“blocks”),
whereas a label track contains only information about time intervals. A
classifier track can be converted into a label track by applying a threshold
on the classifier track’s prediction scores.

it is common to maintain separate access privileges for prediction results,
sensor data and source code. Distributing BSX files means that any
user can easily be given access to prediction results through the publicly
available Xplorer interface, without being exposed to any confidential
information. On the other hand, data scientists can easily enable an
optional, protected ssh tunneling connection (Fig. 3) to access confidential
information without having to deal with BSX files.

While we here propose a very specific system architecture to optimize
the overall model development cycle, Xplorer can also be used as a
standalone tool to handle the import of classifier predictions, ground-truth
labels or generic time intervals from standard CSV files.

3.2. User Interface

The interface of Xplorer (Fig. 2) is composed of a main view in which
classification results and labels are represented as linear tracks stacked
vertically. A track visually corresponds to a sequence of non-overlapping
colored blocks positioned over a common timeline. We categorize tracks
into two types based on the form of the data they visualize: classifier
tracks and label tracks (Fig. 5). Although here we represent classifier
tracks in blue and label tracks in green, we note that both the color of each
track and their vertical arrangement are freely customized by the user.

In classifier tracks (Fig. 2a), a block corresponds to a single prediction
or to a set of consecutive identical predictions, and this may result in
blocks of variable length. If the output of a classifier is binary, the
block is visible only when the activity is detected. If a classifier outputs
continuous probability scores, the block is generated by applying a
classifier-specific threshold to the score values (Fig. 5). The opacity of
a block encodes the associated probability score, increasing with high
score values and decreasing with low score values. When dealing with
multi-class classifiers, Xplorer generates by default a separate track for
each predicted class, leaving an option to aggregate them visually.

In label tracks (Fig. 2b), each block corresponds to a textual label (e.g.
“Walking,” “Person is sitting”) characterized by a start and end time that
determine its position and length. Labels can be either algorithmically
generated or manually defined by a human, and are often used as ground-
truth or as a reference for validating classifier tracks. A particular type of
label track, called protocol track (Fig. 2c), can hold different unique labels
on the same timeline, given they do not overlap with each other. A protocol
track is generally used as a reference to the data collection process, where
each block corresponds to a specific task performed by a subject.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

Name, author and
version of a classifier

Synchronized video

Inspection panel

Playback cursor
Track actions

Name, author and
version of a classifier

Synchronized video

Inspection panel

Playback cursor
Track actions

Synchronized video

Figure 6: Sample track configuration in Xplorer. It is obvious from the
pattern of green and blue boxes (label and classifier tracks, respectively)
that the subject is alternating between walking and turning movements.
Visual alignment, video playback and variable inspection can be used
in combination to better understand predicted motor events.

While all other temporal data is represented in linear tracks, video
is shown in a separate undocked window (Fig. 2d), which can be dragged
across the interface and freely resized by the user. The interface of Xplorer
also includes a left sidebar from which users can decide which tracks
to visualize and can easily zoom to specific events in the protocol track,
and three auxiliary modal windows. These latter windows can be used
for (1) analyzing classifier performance, (2) inspecting model information
and code revisions, and (3) accessing raw sensor data associated to a
particular prediction or time interval.

3.3. Interactions

Track information can be analyzed at different levels of granularity
through zooming and panning, which are performed with the mouse
wheel and drag actions. Hovering on a block displays information
about the correspondent prediction or label (e.g. author, duration) as a
tooltip. For classifier tracks, the tooltip shows classifier-specific variables
associated to the prediction (e.g. “tremor frequency,” “angular velocity”)
that data scientists can use to debug their algorithms (Fig. 6).

Each classifier track also includes four buttons enabling the user to (1)
increase its height for better visibility, (2) play consecutively the videos of
all detected activities, (3) display information about the underlying predic-
tive model (e.g. sensors, prediction window and threshold used), and (4)
switch between two different visualization modes (area chart or horizontal
bars). Fig. 5 explains how a classifier track can also be represented as an
area chart, visualizing a continuous probability score over time. This mode
is particularly useful for observing how a classifier’s threshold determines
which events are detected (and thus generate a block). The threshold can
be dynamically changed by the user by moving the red horizontal line
shown in Fig. 5, thus avoiding the recomputation of classification results.
All tracks can be vertically rearranged by dragging, so that users can better
compare them by placing tracks of interest next to each other.

4. Visual Track Algebra

While analyzing each track separately may be sufficient for some
applications, in many cases the ability to combine different tracks can
be essential. For instance, a user may want to analyze the output of a
tremor classifier only when a different classifier predicts no walking
movement. Similarly, a user wanting to consider all moments in which
a subject is stationary needs to unify the labels associated to “Sitting”
with labels associated to “Standing”. To enable reasoning beyond the

A

B

A ∧ B

A - B

B - A

Classifier

Label

True positives

False Positives

False negatives

A ⊕ B Misclassifications

¬ (A ∨ B) True negatives

Figure 7: Validation of classifiers through track algebra. A represents
a classifier track and B represents a label track containing ground-truth
labels. By computing the intersection and subtraction of the two tracks,
users can quickly identify correct and incorrect predictions.

scope of single classifiers and labels, we define a visual algebra that can
generate new tracks as combinations of existing tracks. Operations such
as addition, subtraction, logic conjunction and disjunction can be applied
to both classifier and label tracks with different semantic meaning.

Fig. 7 illustrates how the most common operators can be used for
classifier validation. If we denote a classifier track by A and a label track
used as ground truth by B, A∧B corresponds to the intersection of both
tracks, that is to the events that were correctly predicted by the model
(true positives). Similarly, we can define the difference between track
A and track B as a new track composed of instances of A not present in
B. This way, the track A−B contains all classifications that do not match
any ground-truth label (false positives), while B−A conversely represents
labeled events not identified by the predictive model (false negatives).

The power of the track algebra lies in enabling users quickly to combine
tracks to validate complex hypotheses about the classification process. In
particular, in the presence of ground-truth labels, identifying misclassified
events is visually straightforward. In combination with the video func-
tionality, the track algebra also enables the consecutive playing of all false
positive and false negative predictions for a particular classifier. This way,
the user can visually validate the performance of his predictive model and
reason about the causes of each single misprediction based on its context.

4.1. Command Line: Combining, Filtering and Ordering

Track Xplorer interface features a command-line interface that lets users
quickly perform complex interactions, such as track manipulation through
visual algebra. Fig. 8 lists the most common commands executable from
the command line. Each command is composed of one operator and one
or two operands, which can be track identifiers or numerical values. A
track identifier is automatically generated as a combination of the track
name, author and version (e.g., the first version of the “Sleeping” classifier
created by author “John” generates the ID “SleepingJohn1.0”) and is
made available by auto-completion. For instance, when “threshold sleep”
is typed, the command line automatically infers which available track is
best suited to the operator “threshold”, highlights it in the main view, and
offers the suggested completion “threshold SleepingJohn1.0”. Tracks can
also be referred by their order of appearance (e.g. “union 1 2” generates
the union of the first two tracks) or by string wildcards (e.g. “show %walk”
makes all tracks related to walk visible). When a command generates
a new track, it is added to the main view and its name and identifier
are defined automatically from the operation performed. The command
line can also be used to compute performance metrics, order tracks,
and filter classification events based on their attributes. For instance, the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

Operator P1 P2 Description

negate T Generates ¬T
add / union T1 T2 Generates T1∨T2
intersection T1 T2 Generates T1∧T2

errors T1 T2 Generates T1⊕T2
subtract T1 T2 Generates T1−T2

match T1 T2 Generates T1 ∼ T2
variation T1 [T2] Generates T1 ∂ T2

play T Plays all events in track T
threshold C Float Changes C’s threshold to a fixed value

show / hide T Shows / hides track T
transform C Thresholds C and generates an L track

rename T Renames a track
color T Color Changes the color of track T

author A Shows author A’s tracks
filter T Exp Selects events of T that satisfy Exp
order Smart ordering based on current time
info T Display detailed information on a track

jaccard T1 T2 Jaccard distance between T1 and T2
roc C L Computes ROC curve and AUC score

report C L Computes precision, recall and F1 score
score T Computes the match score metric

Figure 8: Commands of the Xplorer command line. P1 and P2 are the
parameters required by each command. T is a placeholder for a generic
track’s identifier, whereas C and L indicate a classifier and a label track
respectively. Track type conversion is handled automatically according
to Fig. 5.

A

B

A ∧ B
A ∨ B

Classifier

Label

A ∧ B
(A ∧ B) ∨ (A – B)Precision

A ∧ B
(A ∧ B) ∨ (A – B)

A ∧ B
A ∨ B

Accuracy

A ∧ B
(A ∧ B) ∨ (B − A)Recall

A ∧ B
(A ∧ B) ∨ (B – A)

Figure 9: Common performance metrics computed through track algebra.
A is a classifier track and B is a label track containing ground-truth labels.
Accuracy, precision and recall scores can be visualized as a “container”
track with partial color fill. Mispredictions affecting a specific perfor-
mance metric are localized in the non-filled (blank) regions of the track.

command “filter TurningErhan1.2 angle>60&duration>2” creates a new
track containing only slow-turn events that last more than two seconds
and in which the subject rotates by more than sixty degrees. When a
moment t along the timeline is chosen with the cursor, the command
“order” instead selects all tracks containing an event overlapping the time
interval (t−ε,t+ε), and orders them based on their temporal match.

4.2. Classifier Validation

When a classifier track A and a ground-truth label track B are observed
next to each other, it is intuitively clear that the performance of the
predictive model depends on how extensively the blocks of each track
are aligned with each other. Optimally, for each block in A there should
exist a block in B of equal length whose start and end points match those

ROC curve

Performance metrics

Model and ground truth selection

Latest commits

Model metadata

Figure 10: Performance metrics (top) and classifier information (bottom)
modal windows. Xplorer features a modal window (top) to display
different performance measures for a classifier track and includes an
interactive ROC (Receiver Operating Characteristic) curve to help
the user choose an adequate threshold for the selected model. The
information modal (bottom) displays model metadata and summarizes
commits and modifications performed on the code repository.

of A. However, misclassifications and other prediction-related errors may
misalign or eliminate one of these two blocks.

A straightforward numerical way to quantify the visual overlap of two
tracks is the Jaccard index, defined as the intersection over union of two
series of values. If we define the “length” of a track as the sum of the
duration of all its blocks, the Jaccard index simply corresponds to the
length of the intersection of two tracks (A∧B) divided by the length of
their union (A∨B).

Leveraging the definitions in Fig. 7 lets us extend this example and ex-
press common performance metrics such as accuracy, precision and recall
scores in terms of visual track algebra (Fig. 9). In particular, we can define
a new type of track in which a set of “empty” boxes is defined by the de-
nominator of the formulas in Fig. 9 and is filled according to the numerator
of the fraction. Non-filled regions of the track correspond to mispredictions

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

affecting a specific performance metric, whereas filled regions correspond
to the contributing correct predictions. While performance metrics are
generally expressed as aggregate numerical values, our method also vi-
sualizes them spatially—enabling data scientists to understand how these
proportions are computed, to identify where mispredictions are located in
time, and to discern which of them affect a specific metric of interest. For
instance, the diagram in Fig. 9 makes it clear that the value of the recall
performance metric is unaffected by the first misprediction of classifier A.

Since performance metrics often depend on the threshold applied to the
continuous prediction of a classifier, we include in the Xplorer interface a
modal window displaying an interactive Receiver Operating Characteristic
(ROC) plot (Fig. 10) with its related Area Under the Curve (AUC)
score—a threshold-independent performance metric. By dynamically
changing the threshold, the user can balance the number of true positives
and false negatives and observe how tracks and metrics are updated.

4.3. Advanced Algebraic Combinations

So far we have primarily described how to apply our visual track algebra
between a classifier track and label track containing ground-truth labels.
In real-life scenarios, the development of predictive models can benefit
from applying algebra on a wide variety of track combinations, even
over more than two tracks at a time.

It can be meaningful to apply our algebra over two classifier tracks.
Computing the intersection of two classifiers (Fig. 11a) shows how greatly
their event detections correlate. Alternatively, one can combine multiple
classifiers to estimate how they would perform if executed together. As
an example, if a predictive model has many false positives because the
subject is performing a different activity, a second classifier that detects
that activity and removes the outliers (Fig. 11b) could be useful.

Often the generation of ground-truth information for motor activities
entails multiple people manually annotating the same dataset. Since
motor activities are perceived slightly differently by annotators, evaluating
performance based on their agreement (Fig. 11e) is often useful. Track
algebra can also be used to exclude from validation all cases in which
ground-truth labels (Fig. 11d) could not be collected, thus guaranteeing
a more legitimate performance estimate. Similarly, mutually exclusive
labels can be combined to exclude unclear motor events (Fig. 11f).

Finally, we note that classification performance in activity detection
is highly affected by how much predictions and labels overlap over
time. Sometimes it is of interest to precisely matching the start and end
time of each motor event, whereas in other instances event detection
is sufficient. In the latter case, precise overlap of two tracks is not a
reasonable performance metric. We thus introduce the “~” operator, a
variation of the subtraction operator that is not sensitive to the start and
end of each detection (Fig. 11c). Applications of the advanced algebraic
operations introduced here are discussed further in the next section.

5. Use Case: Detecting Motor Activities in Parkinson’s Subjects

We present here the application of our system to a project involving
predictive models to automatically detect specific motor activities
by subjects affected by Parkinson’s disease. Xplorer was used as a
companion tool over most of the project by a mixed team of fourteen
data scientists, domains experts and business people.

Six wearable IMU sensors were worn by 25 Parkinson’s disease sub-
jects over multiple sessions (visits) of about an hour’s duration. The sensors
measured accelerometer, gyroscope and magnetometer information at

128Hz and were placed on the wrists, feet, chest and back of the patients.
During each visit, all subjects performed the same set of predefined tasks
according to a single clinical protocol. Technicians not involved in the
system development work handled recording sessions, labeling specific
activities and time-stamping the task executions. Sensor data, ground-truth
labels and video files were all stored in a single database that all data
scientists could access as they developed their predictive models.

Data scientists developed their algorithms in Python, in accordance
with the specifications of our analytics pipeline. Their code was pushed
to a private GitHub repository and automatically loaded and executed
by our system. The results of the computation were systematically made
available to the team through the Xplorer user interface, with no additional
input from the group members. Classification results were analyzed both
individually and collaboratively during weekly team meetings.

5.1. Classifier Development and Comparison

Developing a predictive model is an iterative, trial-and-error process
made up of analyzing a first set of classification results, tuning model
parameters and then recomputing predictions. Xplorer proved valuable to
data scientists in discovering insights as they analyzed classification results.

Video Playback and Track Algebra. The playback functionality, in
combination with the track algebra, proved to be fundamental in quickly
identifying mispredictions. For example, subtracting the “Walk” label track
from the “Walk” classifier track and playing the resulting track showed
all cases in which the classifier did not detect that the subject was walking
(false negatives). By observing the video and the task labels, data scientists
realized that, since the model was using a sensor worn on the chest, it
was incorrectly classifying movements such as rising from the chair and
buttoning a coat (Fig. 12a). Similarly, the “Step detector” classifier track
(based on shoe-worn sensors) showed false positives corresponding to foot
tremor (Fig. 12b), particularly common when subjects were sitting with
their legs crossed. Exploiting these insights, data scientists decided to re-
train their classification models, either by using data from different sensors
or by including in the training set the activities that had been misclassified.

Model Debugging. Another widely used feature was the ability to inspect
information about each single prediction. After noticing that the two hand
classifiers “Pronation-supination” and “Tremor” were biased by the action
of walking, data scientists were able to mouse over mispredicted events and
observe the attributes computed by their predictive models (Fig. 12d). In
this case, each prediction held numerical information about hand rotation
angle, hand rotation speed, tremor frequency and tremor amplitude. By
analyzing these attributes, data scientists were able to filter out movements
happening at specific frequencies associated with walking, thus making
their model more robust. Similarly, the filtering function was used to check
the validity of step detections and revealed several events characterized by
unexpectedly long durations and unrealistic speeds (Fig. 12b). Isolating
these events and playing their associated video showed that the step-
detection algorithm did not properly detect the foot-landing phase.

Classifier Versioning. A key feature of Xplorer is the ability to compare
the results not only of different classifiers, but also of different versions of
the same predictive model. Not always updating a model may yield better
performance, and tracking changes is important in understanding which
modifications have led to an improvement or should be reverted. Version
comparison was typically used to tune model parameters to balance the
number of false positives and false negatives, in particular for classifiers
such as “Sit2Stand” and “Tremor” (Fig. 12d).

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

A1

A2

Classifier

Classifier

A1 - A2 Combined classifier

False positive
Classifier A2
improves A1

A1

A2

Classifier

Classifier

A1 ∧ A2 Correlation

Different activities are detected
contemporaneously by A1 and A2

A

B

A ~ B

Classifier

Label

Loose False Positives

A - B False Positives

Pattern of prediction is emphasized during validation

A Classifier

LabelB1

LabelB2

Mutually
exclusive labels

MisclassificationsA ⊕ B1

Confidence Misclassifications(A ⊕ B1)	∧	(B1	∨ B2)

Situations difficult to label excluded from validation

B1

B2

B1 ⊕ B2

Label by Author 1

Label by Author 2

Disagreement label

B1 ∧ B2 Agreement label

Only agreement labels are used for validation

A

? ? ?

B

C

Classifier

Label

Missing labels

(A ⊕ B) - C Misclassifications

Unlabeled region
removed from validation

a b

ed

c

f

Figure 11: Advanced algebraic applications. Track algebra can also be applied among classifier tracks, e.g., to quantify their correlation (a) or to
estimate their combined performance if they were executed together (b). Other relevant applications relate to obtaining a more legitimate performance
estimate when dealing with missing labels (d), unclear motor events (f), or multiple sources of ground-truth information (e). The “~” operator is also
introduced to emphasize event detection over precise temporal matching (c).

Agreement labels

Inconsistent naming
and interpretation!

Need to remove turns
from James’ “Gait” labels

Why only one? Unusable label!

James’ and Marco’s
“walk” labels are different

Smart ordering reorders
tracks based on their

relevance with respect to a
selected moment in time

Of a total of 143 tracks, we want
to show only the ones of interest

Radius of
interest

Inconsistent steps have been filtered out based on duration

Too long step!

False positives
due to leg tremor

The inspection panel can be used to
observe attributes of a specific prediction

Comparison
between versions

v1.2 and v1.1

“Tremor” classifier v1.2 combined with the
“Walking” one to filter out unstable predictions

b

e f

Erroneously considered
a false positive

Mispredictions in this region are not considered anymore

Mask used to exclude ambiguous
regions from validation

The subject is not walking, but the
classifier detects movement

The author uses a different
sensor and solves the issue

a

The sequence of false positives is
played to understand the problem

The model based on the sternum sensor is too sensitive to chest movements!

c

d

Figure 12: Sample screens from our use case: (a) combining track algebra and video playback to identify false positives; (b) using filtering to identify
and remove tremor mispredictions; (c) removing regions of uncertainty from validation; (d) comparing classifier version and inspecting attributes;
(e) handling inconsistent labeling with track algebra; (f) using smart ordering to identify tracks of interest.

5.2. Label Accuracy and Validation

While human-generated labels may seem a valid source of ground-truth
information, blindly assuming their completeness and correctness can
easily lead to wrong insights and inaccurate performance estimates.
A mislabeled time period, for instance, can erroneously reveal a
false-positive or false-negative prediction, thus decreasing the classifier’s
performance and creating a bias in interpreting its classification results.

Partial Labeling. The first issue encountered in this project was the
discrepancy between the ground-truth labels provided by video annotators
(who were instructed using a pre-existing medical protocol) and those re-
quested or expected by data scientists (who were more aware of machine-
learning requirements for training). In many cases, such problems could
be easily solved by combining labels through track algebra. For instance,
while raters defined partial labels such as “ShortWalk” and “LongWalk”
or “Turn90” and “Turn>90”, data scientists could combine them in single

tracks (“ShortWalk+LongWalk”, “Turn90+Turn>90”) and then use them
in evaluating the performance of their classifiers (Fig. 6).

Missing Labels. Another problem involving manual video annotations
was a sporadic absence of labels, either due to distraction of the technician
or to the subject being off camera. In evaluating the performance of the
“Walking” classifier through track algebra, the team found a percentage of
false positives much higher than expected. Playing the corresponding parts
of the video revealed that the subject had walked outside the camera view,
where the video annotator couldn’t tell what actions were performed. Here,
the annotator was asked to generate a new label track indicating all mo-
ments in which the patient was off camera, and these were then excluded
from the performance evaluation via track algebraic subtraction (Fig. 12c).

Label Definition and Human Bias. In looking more minutely at
mispredictions, the team observed that among the causes of lower per-
formance was the definition of motor activities themselves. For instance,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

while the “Walking” classifier was trained to recognize any horizontal
movement involving foot motion, the annotator’s definition of the motor
activity required a minimum of three steps by the patient in the same
direction. Because of this, the track algebraic difference showed a large
set of false positives associated to small movements, such as performing
few steps in reaching an object. Similarly, an inconsistent definition of
“turn” was used for generating labels. Typical questions in team meetings
included “Should a larger rotation of the chest be considered a turn, even
if the legs don’t move?”, “Which is the minimum angle of rotation that
defines a turn?”, and “To what extent it is useful to consider such details
for the purpose of the project?”. Fig 12e shows how these inconsistencies
in labeling were handled through track algebra. Visually matching the
alignment of predictions revealed human bias in the annotation of motor
activities. For instance, it was discovered that some “walking” labels were
assigned before the patient actually started moving his feet. This mislabel-
ing probably occurred because the video annotator already expected the
intention to move of the subject, whose actions had to follow a standard
medical protocol. During performance evaluation, data scientists could
limit these difficulties by considering detection patterns through the “~”
operator (Fig 11c). To mitigate this problem, the data scientist team asked
the technicians to provide multiple ground-truth labels by different video
annotators for a given activity. Thanks to Xplorer’s track intersection
functionality (Fig. 11e), data scientists could then run performance
evaluations only in regions where the annotators agreed (Fig. 12e).

5.3. Team Collaboration

While individual data scientists used Xplorer for classifier development,
the visualization tool was also used collectively by the entire team during
weekly meetings. In particular, its visual output was projected on a large
screen or shared with remote participants via video conferencing. Every
week, the tool would be used to show progress on acquiring new patient
data, developing classifiers and generating new ground-truth labels. The
person acting as moderator also used Xplorer to review team progress
and lead the conversation.

Collaborative Interpretation. Due to its abstraction and simple visuals,
Xplorer proved to be an efficient medium for discussion among people
with very different backgrounds. Lack of familiarity with machine
learning or with the details of each predicted model was no impediment
for team members in visually checking the alignment of tracks and further
validating them with the video. Each data scientist could observe and
give feedback about models built by other developers without knowing
all their implementation details. Domain experts as well were able to
share their knowledge of Parkinson’s disease and advise data scientists
how best to handle certain motor-activity events. Similarly, data scientists
could express through Xplorer the need for additional training samples
or higher- quality ground-truth labels.

Decision Making. Xplorer was used managerially to track the progress
of the project with respect to deadlines and to assess the quality of each
predictive model before deployment. Human resources were dynamically
allocated in order to compensate for predictive models that showed
weaknesses in Xplorer. For instance, using the tool quickly led to a
discussion of the quality and reliability of labels and suggested that
management consider hiring new personnel to annotate videos manually.
Similarly, false negatives shown in Xplorer were used to justify the
acquisition of new data from additional patients in order to have enough
samples for each Parkinson’s phenotype. Consideration of classifier
accuracy from the video footage led to the exclusion of a subset of the
sensors from the project scope, a decision that led data scientists to focus
more on wrist and lumbar sensors.

A

B

Classifier v1.0

Classifier v1.1

A - B v1.1 Loss

B - A v1.1 Gain

A 𝜕 B v1.1 Comparison

Figure 13: Classifier versioning. Track Xplorer supports a hybrid
versioning based on the combination of classic version control systems
(e.g. git) and a standardized model definition. Track algebra can also
be used to visualize differences between classifier versions.

6. Discussion

6.1. Improving Scalability at Multiple Levels

Users can exploit five main data components in performing visual
analysis of classification results: (1) the actual results of the analysis,
(2) ground-truth labels, (3) multimedia footage, (4) raw sensor data and
(5) additional metadata information. While (3) can be consumed via
streaming and (5) generally uses only a limited amount of memory, the
number of instances of (1), (2) and (3) can cause serious scalability issues
that affect the interactivity of the system. We resolve these issues by
reducing the frequency of (1) and (2) events through the compression
algorithm in Fig. 4, and by dynamically loading (3) only for small subsets
of the dataset, based on user request.

A different scalability limitation lies instead in the number of tracks vi-
sualized on screen, which amounted to almost 100 in our use case scenario.
Too many classifier or label tracks displayed at the same time can make
visual search and comparison cumbersome for the user, who would prefer
a small, ordered set of tracks so as to achieve the desired visual insights.
For this reason, we combine the use of smart autocompletion and wildcard
selectors in the command line with a smart ordering functionality.

Smart track ordering addresses the situation in which the user is
interested in a particular moment in time and wants to visually compare all
tracks containing relevant information in that particular time window. Say,
for instance, that the user is focusing on the moment in which the subject
is standing up from a chair and wants to see tracks that detect events
related to this action. Smart ordering automatically reorders classifier
and label tracks, bringing Arising from chair, Sit-to-Stand, Sitting and
Standing close to each other. Smart ordering further remembers previous
tracks of interest, so that if the user focuses on a consecutive action in
which the user sits back on the chair, the track Stand-to-sit is ordered
on top and the track Sit-to-stand (no longer involved) remains visible.

6.2. A First Step Towards Model Versioning

As machine learning technology matures, research has focused more
and more on creating systems to build models more effectively. However,
despite the fast expansion of machine-learning applications into new
domains, many aspects of the predictive modeling life cycle have not yet
been properly addressed. Track Xplorer relies on enforcing a standardized
model definition that all data scientists commit to use, but leaves them
free to continue using git as a versioning system. In particular, Xplorer’s
analytics pipeline automatically extracts model metadata information
from git commits and presents it in the front-end user interface (Fig. 10,
bottom) while comparing multiple versions of the same classifier. Data
scientists can use the track algebra to identify differences between model

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

A

B

Classifier

Label

A

B

Classifier

Label
2

1

A

B

Classifier

Label
3

B - A False negatives

A ~ B Mismatches

Jaccard index: 50%

Accuracy score: >95%

Match score: 75%

Figure 14: Enhanced performance analysis through visual track algebra.
Track Xplorer lets data scientists reason about the tradeoffs of each
performance metric, helping them decide which ones to adopt. It also
helps them gain insights for developing new, effective performance
metrics tailored to the classification task at hand.

versions (Fig. 13) and then inspect which parameters and commits are
associated to the best results. This way, data scientists can easily go back
to their code and revert or confirm modifications to their model.

6.3. Running Meaningful Performance Evaluations

As shown in Fig. 9, our track algebra also supports visualizing over
time the contributions of predictions to the computation of common
performance metrics. Key in evaluating the performance of a predictive
model is choosing which quality metrics to adopt — and the decision is
often based on the desired outcome of the prediction. For instance, let’s
suppose we are interested in detecting the event of a subject standing from
a seated position, but we are not concerned with detecting a precise time
window for this movement. In case (1) of Fig. 14, we would correctly
predict one Sit-to-Stand event out of two, after a long period in which
no events are detected. If we consider the fact that the classifier correctly
predicted that no other events happened over that period, the accuracy
metric would tell us that our model is performing extremely well (beyond
95% correct predictions over time). However, for our purposes, this metric
is extremely misleading, since the classifier missed half of the interesting
events. Similarly, the Jaccard index computed in case (2) of Fig. 14
would suggest a 50% overlap, but this is not very meaningful if we are
interested in event detection only. The simple concepts of false positives
and false negatives in fact assume subjective meanings in time-series data
classifications. Fig. 14(3) shows how the detection of four events would by
definition generate seven sequences of mispredictions, with a very negative
impact on most performance metrics. Xplorer enables data scientists to
visually assess the suitability of a particular metric, but also encourages
the definition of new performance estimators. For instance, in Fig. 14(3)
we could approximate the overall performance by applying the match
operator of our track algebra, which identifies only one mispredicted
event. Visually, this leads us to define a new and more suitable empirical
performance metric that simply corresponds to the number of correctly
detected events (in this case, three out of four, i.e. 75%).

Confidence

Uncertainty (start) Uncertainty (end)

Figure 15: A probabilistic approach to ground truth information. Labels
could be better modeled as a function over time to take into account the
confidence on the event and the uncertainty in precisely identifying its
start and end timepoints.

6.4. A New Model for Activity Labeling

Another issue affecting performance evaluation is the quality of ground-
truth labels, which we treated simply as actions defined through a start
and end moment in time. As discussed in our use case, video annotators
cannot always find precise time boundaries for a motor activity and
at times are not even sure if an action should be labeled at all—with
predictably affecting the subsequent validation process. It may be useful
instead to approach ground-truth labels probabilistically, similarly to what
is currently done for classifiers. For instance, a ground-truth label could
be defined as a function whose value depends on the confidence of the
video annotator, with time boundaries modeled so as to take into account
the uncertainty in determining the exact moment at which the action
started or ended (Fig. 15).This would make it possible to devise new
performance metrics and define a continuous version of our current track
algebra, with broader possibilities for model analysis and manipulation.

7. Conclusion

We introduce Track Xplorer, a system for interactive visual analysis of pre-
dictions of classifiers modeled to detect events in temporal sensor data. Our
system enables the user to visually and quantitatively analyze and compare
results from multiple classification models, improving the model develop-
ment and debugging experience of data scientists. Track Xplorer couples
contextual information such as ground-truth labels, expert annotations
and event videos together with track visualizations of predictions through
interaction and visual encoding, thereby empowering users of diverse back-
grounds to better interpret, debug, and enhance classifier performance. We
also introduce an extensible visual algebra over track representations that
supports composable and rigorous performance comparison and analysis.

We demonstrate the usefulness of our tool through its application in
a collaborative project for classifying motor activity patterns to score
the degree of disease progression among Parkinson’s disease patients.
Track Xplorer enables the project team members to identify early on
possible systemic errors in the data, reason about and find the causes
of misclassifications, and effectively compare the results of different
classifiers, thus improving classification performance by selecting better
models and parameters.

Research into systems for machine learning model development and
management is nascent but burgeoning. These systems would benefit
from integrating data visualization and visual analytics as a first-class
citizen for improved user experience. Track Xplorer is the first system
that enables visual and quantitative analysis, comparison and tracking
of temporal multisensor data classifications across models.

8. Acknowledgments

We thank the BlueSky project members at IBM Research for their feed-
back on Track Xplorer and earlier drafts of this paper.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Marco Cavallo & Çağatay Demiralp / Track Xplorer

References
[ACD∗15] AMERSHI S., CHICKERING M., DRUCKER S. M., LEE B.,

SIMARD P., SUH J.: ModelTracker: Redesigning performance analysis tools
for machine learning. In Proc. CHI (2015), ACM, pp. 337–346. 1, 3

[Ado17] ADOBE CORPORATION: Premiere Pro. http://www.adobe.
com/products/premiere.html, 2017. Accessed: 2017-07-31. 3

[AHH∗14] ALSALLAKH B., HANBURY A., HAUSER H., MIKSCH S.,
RAUBER A.: Visual methods for analyzing probabilistic classification data.
IEEE TVCG 20, 12 (2014), 1703–1712. 1, 3

[All83] ALLEN J. F.: Maintaining knowledge about temporal intervals.
Commun. ACM 26, 11 (1983), 832–843. 3

[App17] APPLE CORPORATION: iMovie. https://www.apple.com/
imovie/, 2017. Accessed: 2017-07-31. 3

[BCH∗15] BHATTACHERJEE S., CHAVAN A., HUANG S., DESHPANDE
A., PARAMESWARAN A.: Principles of dataset versioning: Exploring the
recreation/storage tradeoff. Proceedings of the VLDB Endowment 8, 12 (2015),
1346–1357. 3

[BSM04] BADE R., SCHLECHTWEG S., MIKSCH S.: Connecting time-oriented
data and information to a coherent interactive visualization. In Procs. CHI
(2004), ACM, pp. 105–112. 3

[CFS∗06] CALLAHAN S. P., FREIRE J., SANTOS E., SCHEIDEGGER C. E.,
SILVA C. T., VO H. T.: Vistrails: visualization meets data management.
In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data (2006), ACM, pp. 745–747. 3

[CvW18] CAPPERS B. C., VAN WIJK J. J.: Exploring multivariate event
sequences using rules, aggregations, and selections. IEEE TVCG (Proc. InfoVis)
(2018). 3

[DHHH13] DEMIRALP C., HAYDEN E., HAMMERBACHER J., HEER J.: invis:
Exploring high-dimensional rna sequences from in vitro selection. In Proc.
BioVis (2013), IEEE, pp. 1–8. 3

[FKSS06] FAILS J., KARLSON A., SHAHAMAT L., SHNEIDERMAN B.: A
visual interface for multivariate temporal data: Finding patterns of events across
multiple histories. In Procs. VAST (2006), pp. 167–174. 3

[FWBB10] FIUME M., WILLIAMS V., BROOK A., BRUDNO M.: Savant:
genome browser for high-throughput sequencing data. Bioinformatics 26, 16
(2010), 1938–1944. 3

[GS14] GOTZ D., STAVROPOULOS H.: Decisionflow: Visual analytics for
high-dimensional temporal event sequence data. IEEE transactions on
visualization and computer graphics 20, 12 (2014), 1783–1792. 3

[HOB94] HARRISON B. L., OWEN R., BAECKER R. M.: Timelines: An
interactive system for the collection and visualization of temporal data. In
Procs. Graphics Interface (1994), pp. 141–148. 3

[JS99] JENSEN C. S., SNODGRASS R. T.: Temporal data management. IEEE
TKDE 11, 1 (1999), 36–44. 3

[JS09] JIN J., SZEKELY P.: Querymarvel: A visual query language for temporal
patterns using comic strips. In Procs. VL/HCC (Sept 2009), pp. 207–214. 3

[JS10] JIN J., SZEKELY P.: Interactive querying of temporal data using a comic
strip metaphor. In Procs. VAST (2010), pp. 163–170. 3

[Kar94] KARAM G. M.: Visualization using timelines. In ACM SIGSOFT
(1994), pp. 125–137. 3

[KSF∗02] KENT W. J., SUGNET C. W., FUREY T. S., ROSKIN K. M.,
PRINGLE T. H., ZAHLER A. M., HAUSSLER D.: The human genome browser
at ucsc. Genome Research 12, 6 (2002), 996–1006. 3

[MCD17] MIAO H., CHAVAN A., DESHPANDE A.: Provdb: Lifecycle
management of collaborative analysis workflows. In HILDA@ SIGMOD
(2017), pp. 7–1. 3

[MLDD17] MIAO H., LI A., DAVIS L. S., DESHPANDE A.: Modelhub: Deep
learning lifecycle management. In IEEE 33rd International Conference on
Data Engineering (ICDE) (2017), pp. 1393–1394. 3

[MLMdO∗13] MONROE M., LAN R., MORALES DEL OLMO J., SHNEIDER-
MAN B., PLAISANT C., MILLSTEIN J.: The challenges of specifying intervals
and absences in temporal queries: A graphical language approach. In Procs.
CHI (2013), pp. 2349–2358. 3

[PMR∗96] PLAISANT C., MILASH B., ROSE A., WIDOFF S., SHNEIDERMAN
B.: Lifelines: visualizing personal histories. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems (1996), ACM, pp. 221–227. 3

[RAL∗17] REN D., AMERSHI S., LEE B., SUH J., WILLIAMS J. D.: Squares:
Supporting interactive performance analysis for multiclass classifiers. IEEE
TVCG 23 (2017), 61–70. 1, 3

[RBER17] RATNER A. J., BACH S. H., EHRENBERG H. R., RÉ C.: Snorkel:
Fast training set generation for information extraction. In Proceedings of the
2017 ACM International Conference on Management of Data (2017), ACM,
pp. 1683–1686. 3

[RDSW∗16] RATNER A. J., DE SA C. M., WU S., SELSAM D., RÉ C.: Data
programming: Creating large training sets, quickly. In Advances in Neural
Information Processing Systems (2016), pp. 3567–3575. 3

[RTW∗11] ROBINSON J. T., THORVALDSDOTTIR H., WINCKLER W.,
GUTTMAN M., LANDER E. S., GETZ G., MESIROV J. P.: Integrative
genomics viewer. Nature Biotechnology 29, 1 (2011), 24–26. 3

[SAA∗94] SNODGRASS R. T., AHN I., ARIAV G., BATORY D., CLIFFORD
J., DYRESON C. E., ELMASRI R., GRANDI F., JENSEN C. S., KÄFER W.,
KLINE N., KULKARNI K., LEUNG T. Y. C., LORENTZOS N., RODDICK
J. F., SEGEV A., SOO M. D., SRIPADA S. M.: Tsql2 language specification.
SIGMOD Rec. 23, 1 (1994), 65–86. 3

[SGM∗04] STALKER J., GIBBINS B., MEIDL P., SMITH J., SPOONER W.,
HOTZ H.-R., COX A. V.: The ensembl web site: Mechanics of a genome
browser. Genome Research 14, 5 (2004), 951–955. 3

[SHG∗15] SCULLEY D., HOLT G., GOLOVIN D., DAVYDOV E., PHILLIPS
T., EBNER D., CHAUDHARY V., YOUNG M., CRESPO J.-F., DENNISON
D.: Hidden technical debt in machine learning systems. In Advances in Neural
Information Processing Systems (2015), pp. 2503–2511. 3

[SMWH17] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-lite: A grammar of interactive graphics. IEEE Transactions
on Visualization and Computer Graphics 23, 1 (2017), 341–350. 3

[STH02] STOLTE C., TANG D., HANRAHAN P.: Polaris: a system for query,
analysis, and visualization of multidimensional relational databases. IEEE
TVCG 8, 1 (2002), 1–14. 3

[vdWPS∗17] VAN DER WEIDE T., PAPADOPOULOS D., SMIRNOV O.,
ZIELINSKI M., VAN KASTEREN T.: Versioning for end-to-end machine
learning pipelines. In Proc. the 1st Workshop on Data Management for
End-to-End Machine Learning (2017). 3

[VSL∗16] VARTAK M., SUBRAMANYAM H., LEE W.-E., VISWANATHAN S.,
HUSNOO S., MADDEN S., ZAHARIA M.: ModelDB: a system for machine
learning model management. In Proc. HILDA (2016). 3

[WGGP∗] WONGSUPHASAWAT K., GUERRA GÓMEZ J. A., PLAISANT C.,
WANG T. D., TAIEB-MAIMON M., SHNEIDERMAN B.: Lifeflow: Visualizing
an overview of event sequences. In Procs. CHI, pp. 1747–1756. 3

[Wil05] WILKINSON L.: The Grammar of Graphics (Statistics and Computing).
Springer-Verlag, 2005. 3

[ZDFD15] ZGRAGGEN E., DRUCKER S. M., FISHER D., DELINE R.:
(s|qu)eries: Visual regular expressions for querying and exploring event
sequences. In Procs. CHI (2015), ACM. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://www.adobe.com/products/premiere.html
http://www.adobe.com/products/premiere.html
https://www.apple.com/imovie/
https://www.apple.com/imovie/

