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Visual Embedding
A Model for Visualization

Automating the design of effective visual-
izations is an unsolved problem. Although 
researchers have proposed numerous guide-

lines and heuristics, a formal framework for design 
and evaluation is still elusive. Instead, conducting 
a posteriori user studies is still the primary tool 
for assessing a visualization’s effectiveness. Using 
theoretical models presents another, albeit less ex-
plored, approach (for background on such models, 
see the sidebar). We believe that the generative po-
tential of model-based visualizations can acceler-
ate design and complement the summative nature 
of user studies.

Developing a theory of visualization that is 
both descriptive and generative is diffi cult. The 
space of visualizations is large, and the use of vi-
sualization spans many issues in human percep-
tion and cognition. Additional factors, such as 
interaction techniques, can signifi cantly affect a 
visualization’s success. Given our current knowl-

edge, visualization design is an underconstrained 
problem. So, there is value in developing simpler, 
constrained models, each addressing certain as-
pects of visualization while ignoring others, like 
spotlights on a theater stage.

In this context, we introduce visual embedding as 
a model for visualization construction. We defi ne 
a visualization as a function that maps from a do-
main of data points to a range of visual primitives 
(see Figure 1). We claim a visualization is “good” if 
the embedded visual elements preserve structures 
present in the data domain. A function meeting 
this criterion constitutes a visual embedding of 
the data points.

Our model is motivated by the fact that un-
derstanding patterned structures in data is a pri-
mary goal of visual analysis. The proposed basic 
framework can be used to generate and evaluate 
visualizations on the basis of both the underlying 
data and—through the choice of preserved struc-
ture—desired perceptual tasks. Our model is a gen-
eralization of earlier work on structure-preserving 
colorings.1

Representing Structures in Data
Structure is “the arrangement of and relations be-
tween the parts or elements of something complex” 
(http://oxforddictionaries.com/defi nition/english/
structure). How, then, can we express structures 
in data? Unfortunately, a user might not explicitly 
know about important structures in the data, let 
alone be able to express or quantify them.

On the other hand, users often can hypothesize 
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Figure 1. Visual embedding is a function that preserves structures in the 
data (domain) within the embedded perceptual space (range).
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some notion of distance between data points. Us-
ing pairwise distances is one simple and general 
way to implicitly express structures in spaces. For 
example, if a function transforms a 2D or 3D 
Euclidean space while preserving pairwise Euclid-
ean distances, the shape and size of objects in the 
space will stay the same. Similarly, if a function 
existed from a sphere to a plane that preserved all 
pairwise distances on the sphere, we’d have world 
maps without distortion (angles and areas would 
be simultaneously preserved). Structure can be 
operationalized in terms of these atomic pairwise 
relations; in this context, the visualization func-
tion should picture what these pairwise relations 
amount to.

Ideally, distance in the data space should reflect 
users’ understanding of the similarity between 
data points as it relates to their current task. This 
lets them hint at the type of structures they’re 
interested in seeing. For instance, if a user is in-
terested in symmetries, he or she should provide 
a measure that quantifies these relationships. In 
fact, structural criteria such as symmetry and 
continuity often serve as design choices in creat-
ing visualizations. In contrast, distance in the vi-
sual space should convey the perceptual distances 
between visual primitives.

Of course, there can be many other ways of ex-
pressing structures in data. However the structure 
is expressed, the corresponding perceptual range 

Researchers have proposed general and specific models 
of visualization. Owing to space limitations, we confine 

our discussion to a small but representative subset.
Jock Mackinlay introduced one of the most influential 

systems for automatically generating visualizations.1 
Following Jacques Bertin’s aphorism of graphics as a 
language for the eye,2 Mackinlay formulated visualizations 
as sentences in a graphical language. He argued that good 
visualizations will meet the criteria of expressiveness and 
effectiveness. A visualization meets the expressiveness crite-
rion if it faithfully presents the data, without implying false 
inferences. Effectiveness concerns how accurately view-
ers can decode the chosen visual-encoding variables; it’s 
informed by prior studies in graphical perception (for exam-
ple, by William Cleveland and Robert McGill3). Mackinlay’s 
APT (A Presentation Tool) employed a composition algebra 
over a basis set of graphical primitives derived from Bertin’s 
encodings to generate alternative visualizations. The system 
then selected the visualization that best satisfied formal 
expressiveness and effectiveness criteria.

APT didn’t explicitly take into account user tasks or interac-
tion. To this end, Steven Roth and his colleagues extended 
Mackinlay’s work with new types of interactive presentations.4 
Similarly, Stephen Casner built on APT by incorporating user 
tasks to guide visualization generation.5 Some of these ideas 
now support visualization recommendation in Tableau (www.
tableausoftware.com), a commercial visualization tool.

Donald House and his colleagues’ automatic visualiza-
tion system integrated user preferences.6 Genetic algo-
rithms refined a population of visualizations in response to 
user ratings. In contrast to this empirical approach, Daniel 
Pineo and Colin Ware used a computational model of the 
retina and primary visual cortex to automatically evaluate 
and optimize visualizations.7 Jarke van Wijk argued for first 
modeling a perceptual domain (for example, luminance or 
shape perception) and then optimizing for some perceptu-
al goal according to that model.8 Visual embedding can be 

viewed as a reusable template within van Wijk’s discussion 
on perceptually optimal visualizations.

If we chose a motto for visual embedding, it would be 
“visualization as a perceptual painting of structure in data.” In 
this sense, visual embedding’s perceptual-structure preserva-
tion criterion closes the cycle, explicitly linking Mackinlay’s 
expressiveness and effectiveness criteria while providing a 
recipe to achieve both (see the main article).
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should be able to accurately convey that structure. 
One advantage of using pairwise distances is that 
their application to visual spaces is conceptually 
straightforward. We can encode them as perceptual 
differences of color, shape, texture, spatial distance, 
size, and so on. The following discussion uses pair-
wise distances to express structures in data.

Estimating Perceptual Distances  
with Crowdsourcing
To assess structural preservation, we require 
perceptual-distance measures for a given visual-
embedding space. However, except for a few per-
ceptually uniform color spaces, we don’t have 
these measures for most visual spaces. In these 
cases, online crowdsourcing can help us estimate 
perceptual distances.2

A visual space is perceptually uniform if a per-
turbation to any element in it results in a propor-
tional change in a viewer’s percept. For example, 
perceptual experiments find that linear mappings 
for 2D position or 1D length are perceptually lin-
ear. By design, the CIELAB color space is approxi-
mately perceptually uniform; RGB and CIEXYZ 
aren’t. The Euclidean distance between two color 
points in CIELAB is approximately proportional 
to the empirically reported perceptual difference 
between the colors. Conversely, a small change to 
RGB or CIEXYZ triplet values might cause a dis-
proportionate change in perceived colors.

Crowdsourcing is one way to collect large, di-
verse perceptual data samples. For example, Jef-
frey Heer and Michael Bostock replicated prior 
graphical-perception results using crowdsourced 
experiments on Amazon’s Mechanical Turk.2 
CIELAB was also, in a sense, crowdsourced: it was 
created by fitting an appearance model to observ-
ers’ color-scale judgments. We demonstrate the vi-
ability of this approach later.

New Visual Spaces from Old:  
Visual Product Spaces
Formulating visualizations as structure-preserving 
functions raises the possibility of transferring 
other related mathematical concepts. Product 
spaces (or sets) provide one example: we can gen-

erate a new visual space using the Cartesian prod-
uct of existing visual spaces. We call this space a 
visual product space (see Figure 2).

Generally, the product of two perceptually uni-
form visual spaces won’t be uniform. On the other 
hand, when we have two topological spaces en-
dowed with metrics, constructing a metric for the 
product space is straightforward. One challenge is 
to discover whether cases exist that have an analo-
gous procedure for constructing visual product met-
rics. This issue resonates strongly with research on 
interactions between perceptual dimensions (for 
example, integral versus separable visual encod-
ings3). Searching the literature for separable cases 
might be a promising starting point.

Under our model, constructing a good visual-
ization function is fundamentally an optimization 
problem. The nature of embedding spaces often 
determines the available techniques. The spaces 
can be Euclidean (for example, most color spaces, 
including RGB, CIELAB, and CIELUV), continuous 
but non-Euclidean (for example, parametric shape 
spaces and texture spaces), or discrete (for exam-
ple, finite sets of icons, shapes, glyphs, and fonts). 
Some of the many techniques for embedding a do-
main in Euclidean space are principal component 
analysis, multidimensional scaling, isometric fea-
ture mapping, and locally linear embedding.4

Although embedding in the Euclidean space is 
computationally well studied, embedding in non-
Euclidean spaces (continuous or discrete) is not. 
We can formulate the latter problem as a combi-
natorial optimization; graphical models5 are one 
way to formulate and solve these problems.

A graphical model depicts a joint probability 
distribution of random variables. While a graphi-
cal model’s nodes represent random variables, its 
edges represent their conditional dependencies. 
How might we use a graphical model for visual 
embedding? We can define a random variable 
(node) for each data point, assigning that point 
to a visual primitive (for example, color, icon, or 
shape) in the visual-embedding space. Similarly, 
we can use edges to express pairwise distances as 
conditional dependencies that we intend to pre-
serve perceptually in the embedding space. Then, 
we can define the visual-embedding problem as 
finding the mode of the joint distribution defined 
by this graphical model, which we can compute us-
ing efficient inference algorithms.5 Later, we give a 
simple example of how to use graphical models for 
visual embedding.

Directed and undirected graphical models have 
great potential for expressing and synthesizing 
visualizations. We can also extend them to con-

Vp  =

Vg  =

Vp  × Vg  =    ,        ,        , ... ,        ,        ,       , ...          

   ,        ,       ,         ,         ,         ,

Figure 2. A visual product space. To create these 
spaces, we use the Cartesian product of existing 
visual spaces (in this case, Vp and Vg).
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struct embeddings in continuous visual spaces. 
Using graphical models also presents an opportu-
nity to model conditional distributions of visual 
embeddings. We can imagine a scenario in which 
a visualization tool presents a user with sampled 
visualizations drawn from a distribution over pos-
sible visualizations learned by the model.

Applying Our Model
The following three examples demonstrate our 
model.

Coloring Neural Tracts
We colored neural-fiber pathways estimated from 
a diffusion-imaging brain dataset. Given a set of 
tracts, we first computed distances (or dissimilari-
ties) between pairs of pathways. To do this, we used 
a simple measure that quantified the similarity of 
two given neural pathways’ trajectories. We then 
constructed the visualization function by embed-
ding the distances in the CIELAB color space us-
ing multidimensional scaling. Figure 3 shows the 
obtained colorings; perceptual variations in color 
reflect the spatial variations in the tracts.

Scatterplots with Icons
Here, a toy problem demonstrates embedding in a 
discrete visual space. We wanted to assign polygo-
nal icons from the discrete polygonal-shape space Vp 
(see Figure 2) to a given set of 2D points so that the 
points’ spatial proximity was redundantly encoded 
via the assigned polygons’ perceptual proximity. 
Though simple, this setup is realistic: redundant vi-
sual encoding is common in visualization. Alterna-
tively, we could have used icons to convey attributes 
of other dimensions of the data points.

Unlike the coloring example, here we lacked a 
perceptual model for estimating perceived distance. 

So, we obtained a crowdsourced estimate of the per-
ceptual distances between the elements of Vp, using 
Amazon’s Mechanical Turk. The study participants 
saw all possible pairs, including identical ones. We 
used errant ratings of identical polygon pairs to fil-
ter “spammers.” After this initial filtering, we nor-
malized each participant’s ratings and averaged the 
ratings across the users. Finally, we normalized the 
averaged ratings and accumulated the results in a 
distance matrix. Figure 4a shows the task interface 
and resulting perceptual-distance matrix.

We then posed the embedding problem as maxi-
mum a posteriori estimation in a Markov random 
field (an undirected graphical model) to find an 
embedding of a simple 2D point set in Vp. Figure 
4b shows the result. The polygonal primitive as-
signment reflects the data points’ clustering, as we 
desired.

Evaluating Tensor Glyphs
With our model, given suitable data and percep-
tual metrics, we can assess competing visualiza-
tion techniques’ structure-preserving qualities.

We compared superquadrics and cuboids, two 
alternative glyphs used in visualizing second-order 
diffusion tensors (see Figure 5a). We rotated 
the diagonal tensor D = [2.1 0 0; 0 2 0; 0 0 1] 
around its smallest eigenvector (0, 0, 1) with five 
incremental degrees. We computed how the ten-
sor value changed as the Euclidean distance be-
tween the reference tensor and the rotated tensor 
changed. We approximated the perceptual change 
in the corresponding glyph visualizations with 
the sum of the magnitudes of the optical flow at 
each pixel in the image domain. We averaged the 
optical-flow distances over nine viewpoints uni-
formly sampled on a circumscribed sphere under 
fixed lighting and rendering conditions.

(a) (b)

Figure 3. Coloring neural tracts: (a) the internal capsule and (b) the corpus callosum. We colored them using 
visual embedding in a perceptually uniform color space. Perceptual variations in color reflect the spatial 
variations in the tracts.
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The trends in Figure 5b suggest that superquad-
rics represented the change in the data more faith-
fully (that is, preserved the structure better) than 
cuboids. This supports the visualization design 
choice motivating superquadrics.6

Discussion and Research Directions
Embedding spaces needn’t be restricted to visual 
stimuli. They could be any perceptual channel 
or combinations thereof, such as color, texture, 
shape, icon, tactile, and audio features. For ex-
ample, we could, in theory, apply our formulation 
to construct sonifications for people with visual 
disabilities.

Our current examples are only a proof of concept, 
including our approach for estimating perceptual 
distance through crowdsourcing. Visualizations 
live in context; crowdsourcing-based estimated 
perceptual distances can’t capture all the percep-
tual interactions of every context. Also, running 
large-scale crowdsourcing studies can be difficult. 
Because we used a small discrete space, we could 
present every pair of embedding-space points to 
each study participant. Running a similar experi-
ment with thousands of discrete visual primitives 
will require larger studies and more sophisticated 
analysis methods for estimating a distance matrix.7 
Similarly, large-scale embedding can be slow; how-
ever, many heuristics, such as restricting pairwise 
distances to local neighborhoods and sampling, 
can ameliorate the problem.

On the basis of these challenges and insights 
derived from our examples, we envision the fol-
lowing research directions.

A Standard Library of Visual Spaces
The visualization community could benefit from 
a standard library of visual spaces with associated 
perceptual measures. The library would be a prac-
tical resource for constructing useful defaults for 
visualizations. This goal will require consulting 
the literature on the interference of perceptual di-
mensions and running large-scale crowdsourcing 
studies. For the latter, metric learning might help.7

Probabilistic Models of Visualizations
Implementing visual embedding with graphical 
models provides an opportunity to explore proba-
bilistic models of visualization design spaces. This 
might prove fruitful because several “optimum” 
visualizations often exist. Using graphical models 
can also help express high-level structures in data. 
Such models might also make it easier to incorpo-
rate aesthetic or subjective criteria into automatic 
visualization generation.

Evaluating Visualizations
To use visual embedding to evaluate visualizations, 
a primary challenge is to devise and validate ap-
propriate image-space measures (for example, op-
tical flow) to approximate perceptual distances.

Tools
Finally, we want to develop tools that facilitate 
construction of visualizations under our model. 
Two challenges stand out. The first is to develop a 
visualization language that lets users express and 
create visual embeddings without implementing an 
optimization algorithm. This language should inte-
grate libraries of visualization defaults for different 
data and task domains. It might also benefit from 
crowd-programming ideas8 to enable automated 
support for running crowd-sourced evaluations.

The second challenge is to develop a visualization 
debugger in the spirit of the tensor glyph example, 
letting users get runtime feedback about visualiza-
tion quality. We envision future visualization devel-
opment environments integrating such languages 
and debuggers.�
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Figure 4. Embedding in a discrete visual space. (a) We used 
crowdsourcing to estimate perceptual distances for a discrete polygonal-
shape space, Vp (see Figure 2). On the left is the task interface for 
Amazon’s Mechanical Turk; on the right is the estimated perceptual-
distance matrix. Darker colors indicate closer distances. (b) We 
embedded the planar data points in Vp. The polygonal-icon assignment 
reflects the data points’ spatial variation and clustering.
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Figure 5. Evaluating tensor glyphs. (a) A superquadric and a cuboid glyph, used for visualizing the same tensor field.6 The insets 
represent the diagonal tensor D. (b) Changes in the size of D and its superquadric and cuboid representations with respect to 
rotations around the tensor’s smallest eigenvector. The tensor size and the superquadric glyph’s appearance follow a similar 
trend; the cuboid glyph’s appearance differs. This suggests that superquadric glyphs better preserved the structure in the data.


