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Fig. 1: Brain fiber tracts and ventricle landmark with three different linked visual representations.

Abstract—We present a visual exploration paradigm that facilitates navigation through complex fiber tracts by combining traditional
3D model viewing with lower dimensional representations. To this end, we create standard streamtube models along with two two-
dimensional representations, an embedding in the plane and a hierarchical clustering tree, for a given set of fiber tracts. We then
link these three representations using both interaction and color obtained by embedding fiber tracts into a perceptually uniform color
space. We describe an anecdotal evaluation with neuroscientists to assess the usefulness of our method in exploring anatomical
and functional structures in the brain. Expert feedback indicates that, while a standalone clinical use of the proposed method would
require anatomical landmarks in the lower dimensional representations, the approach would be particularly useful in accelerating tract
bundle selection. Results also suggest that combining traditional 3D model viewing with lower dimensional representations can ease
navigation through the complex fiber tract models, improving exploration of the connectivity in the brain.

Index Terms—DTI fiber tracts, embedding, coloring, interaction.

1 INTRODUCTION

Diffusion Tensor Magnetic Resonance Imaging (DTI) enables the ex-
ploration of fibrous tissues such as brain white matter and muscles
non-invasively in-vivo [7]. It exploits the fact that water in these tissues
diffuses at faster rates along fibers than orthogonal to them. Integral
curves that estimate fiber tracts by showing paths of fastest diffusion
are among the most common information derived from DTI volumes.
The ability to estimate fiber tracts in-vivo is one of the key advantages
of DTI over other imaging techniques. Integral curves are generated
from DTI data by following the principal eigenvector of the underlying
diffusion tensor field bidirectionally. These curves are often visualized
with streamlines or variations of streamlines (streamtubes and hyper-
streamlines) in 3D [28, 42]. Reflecting the intricacy of the connectivity
in the brain, these 3D models are generally visually dense. Therefore,
it is often difficult to ascertain tract projections as well as anatomi-
cal and functional structures clearly. Consequently, typical interaction
tasks over tracts, such as fine bundle selection, are often difficult to
perform and have been a focus of recent research [1, 2].

In this context, we present a method for visualizing and interacting
with fiber tracts alongside abstract, lower-dimensional representations.
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For a set of tracts, given as lists of connected points, we create conven-
tional 3D streamtube models and two 2D representations: a planar em-
bedding and a hierarchical clustering tree. Both 2D visualizations are
representations of a similarity (affinity) matrix obtained by computing
pairwise “distances” between the fiber tracts. We obtain the planar em-
bedding by considering each fiber tract to be an individual 2D point for
which we compute coordinates that approximately reflect the distance
relations between the fiber tracts as represented in the similarity ma-
trix. We compute the tree representation, or dendogram, by applying
the average linkage hierarchical clustering algorithm on the similar-
ity matrix. We link the views of these three representations implicitly
through interaction and explicitly through a perceptually uniform col-
oring. Figure 2 shows a visualization of fiber tracts obtained from a
DTI brain data set in our framework. We have obtained feedback from
experts in an anecdotal study for a prototype of the framework. Initial
results suggest that this type of coordinated interaction has the poten-
tial to enable faster and more accurate interaction with dense fiber tract
collections.

Contributions We introduce and anecdotally evaluate a visual explo-
ration method that combines traditional 3D streamtube models with
2D representations, facilitating exploration of fiber tracts in the brain.

2 RELATED WORK

Here we discuss existing techniques related to our work. Specifi-
cally, we present techniques for visualizing and interacting with DTI
datasets, methods for visualizing similarity relations and previous
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Fig. 2: Coordinated DTI tractogram model exploration in lower dimensional visualizations: 2D embedding (upper-right), hierarchical clustering
(lower-left), and L*a*b* color embedder (lower-right). A selection of a fiber-bundle (red) in the hierarchical clustering is mirrored in the other
views.

work using multiple, coordinated views for visualization.

2.1 Visualizing and Interacting with DTI datasets

The most commonly used technique to visualize DTI data is streamline
tracing; in DTI-specific literature this is also called fiber tracking [28]
or tractography [6]. We use this method for our DTI visualization.

Interacting with streamline DTI models is not trivial. A common in-
teraction task is the selection of fiber bundles. This is usually done
directly on the model by placing 3D regions of interest (ROIs) along
the presumed path of the desired bundle and then having the applica-
tion select fibers that intersect those ROIs [12, 40, 26]. More recently,
Akers et al. [2] introduced a 3D sketching and gesture interface for
pathway selection: the user paints a 2D freehand stroke and the selec-
tion algorithm matches it to the tract bundle that looks most similar
from the user’s perspective. Finally, a concurrently published research
by Chen et al. [14] also links 2D embeddings to DTI datasets and finds
that it accelerates interaction. Our work differs mainly by incorporat-
ing hierarchical clustering trees for both exploration and embedding
refinement, representing the variation data point with perceptual vari-
ation of color, and discussing several solutions to the issue of anatom-
ical landmark. Also, our non-linear embedding process enables to em-
bed large number of fiber tracts, including fiber tracts from whole brain
data sets.

Automatic DTI fiber clustering methods have been developed to sup-
port DTI model interaction and visualization. For a review of such
methods consult [27]. The measure used to define the geometric sim-
ilarity between integral curves is fundamental for clustering. A num-
ber of such measures have been described and can be divided into two
categories: those that measure the Euclidean distance between two se-
lected points on two curves and those that summarize all points along
two curves as the mean Euclidean distance along their arc lengths.

Examples of the former type of proximity measure include the clos-
est point measure, the Hausdorff distance [16], and the Fréchet dis-
tance [3]. Examples of the latter type include the average point-by-
point distance between corresponding segments defined in [18], the
mean of closest distances defined in [16], and the mean of thresholded
closest distances defined in [42]. Brun et al. [9] embed the curves in
a feature space and then calculate the distance between the two curves
in the feature space. Finally, fiber similarity can be mapped to color as
was first done in [10] by assigning distinct colors to clusters, and more
recently in [17] by immersing a 3D embedding into the L*a*b* color
space.

2.2 Visualizing Similarity

The visualization literature describes several methods for conveying
similarity relationships between entities. Most of them have been re-
searched in the context of multidimensional visualization, where the
distance is derived from the position of a point along each dimen-
sion. However, a subset of these methods can be used for entities
over which an arbitrary similarity function is specified. In the follow-
ing, we will only review this category. For a more detailed discussion
on multi-dimensional visualization techniques, Keim [25] provides a
good overview.

An intuitive way of making distance apparent is by using a scatterplot,
one of the types of visualization we use in this work. In its simplest
form however, this method can only be used for data with at most
three dimensions and explicit vector values. To overcome this limi-
tation, multi-dimensional scaling (MDS) techniques have been devel-
oped. They attempt to map the multi-dimensional points to a visu-
alizable lower dimension while preserving distance relations between
points. Methods in this category fall into two categories: linear and
non-linear. Linear methods perform a linear combination of the origi-
nal high-dimensional values to project them to a new basis of smaller
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dimension. A well known such example is Principal Component Anal-
ysis (PCA) [23].

Non-linear methods are suited for computing representations when
distances between points are given explicitly but coordinate values for
the points are unknown, as is the case in the tract similarities computed
as part of this research. These methods use the distance between data
points to define an error measure that quantifies the amount of distance
information lost during the embedding. Gradient descent or force sim-
ulation is then used to arrange the points in the low dimensional space
so as to minimize the error measure. A good example of such an ap-
proach is Force Directed Placement (FDP) [20] originally proposed
by Eades [19] as a graph drawing approach. It simulates a system of
masses connected by springs of lengths equal to the distances that need
to be embedded. The points are initially placed at random and are then
iteratively moved by displacements derived from forces computed by
Hook’s spring laws. After a number of iterations the spring system
will reach a local minimum energy state that represents the resulting
embedding. We use this method as part of our work.

An iteration of the original FDP model is O(n2), and since at least
n iterations are necessary to reach equilibrium, the final complexity
is O(n3). This makes the computation for high-resolution, complete
brain models expensive. One method that addresses this problem is
called Force Scheme. Proposed by Tejada et al. [38], it reduces the
overall complexity to O(n2) by requiring fewer iterations to reach the

final state. A complexity of O(n5/4) was achieved by Morrison et
al. [29] by creating a hybrid model based on approximations using
samples and interpolations. In this paper we use another algorithm,
with linear iteration time, developed by Chalmers [13].

A MDS can be used in conjunction with a perceptually uniform color
space to display similarity as a color cue. We use this technique to
reflect the variation of tract similarity as a perceptual variation of col-
ors: similar tracts receive perceptually similar colors while dissimilar
tracts get perceptually distant colors. A color space is said to be per-
ceptually uniform if the perceptual difference between any two colors
in just noticeable difference (JND) units is equal to the Euclidean dis-
tance between the two colors in that color space. The L*a*b* color
space is perceptually uniform and thus a 2D or 3D embedding can be
immersed into L*a*b* to obtain a similarity color coding. It should be
noted, however, that the perceptually uniformity in the L*a*b* is an
empirical approximation and assumes a particular calibration setting
for individual monitors.

A dendogram is another method for visualizing similarity that does
not require explicit vector values for points and as such is suited for
displaying tract similarity. It is a tree-like visual representation of
results produced by hierarchical agglomerative clustering algorithms
such as [4] or [24]. Because they are used in a wide range of scientific
domains they have become intuitive tools for many scientists.

2.3 Coordinated Views for Visualization

Visualization techniques are usually task and data specific. Different
views are therefore frequently used to show data from multiple per-
spectives, combine the strengths of any individual technique, and dis-
tribute the cognitive and interpretative load of complicated data and
tasks across multiple views [5].

However, the task of aggregating the different views into a unitary
single mental image factors in the complexity of the visualization
itself [5]. This effect can be reduced by coordinating the content,
appearance and behavior of the views [30]. This is achieved either
implicitly, through coordinated appearance or behavior, or explicitly
through visual cues, such as color or lines linking the separate win-
dows. In this paper we use both approaches. Shneiderman [37] of-
fers a good review on multiple-view coordination techniques such as
brushing and linking or details on demand.

As in our work, multiple views applications are often used to aid in
the understanding and exploration of complicated datasets. In [11],
the authors show several examples of how brushing and linking tech-
niques can be used to map a complicated data space into multiple sim-
ple views that, when explored together, convey the overview data pic-
ture. Gresh et al. [22] present an approach that links 3D visualizations
to statistical representations to facilitate the effective exploration of
medical data. XmdvTool [41] and Visulab [36] attempt to maximize
a user’s understanding of multidimensional data by linking multiple
representational techniques such as scatterplots, glyphs, or parallel co-
ordinates.

Finally, work such as [32] and [8] propose domain independent, ex-
tensible multiple-view architectures that satisfy general requirements
of the visualization domain.

3 METHODS

In this section we provide a detailed description of the methods we in-
troduce and their implementation. We begin by defining the tract sim-
ilarity measure, continue with the algorithms and visualizations used
to display this measure, the types of interaction that our framework
permits, and conclude with details about or DTI models.

3.1 Similarity Between Fiber Tracts

We quantify how fiber tracts relate to each other by computing an
anatomically motivated pairwise distance measure between them. Our
measure tries to capture how much any given two tracts follow a sim-
ilar path, while giving more weight to the points closer to tract ends.
There have been different distance measures proposed for fiber tracts
generated from DTI volumes [27]. In the current work, we use the
weighted normalized sum of minimum distances measure proposed
in [17]. We have chosen the proposed measure because it assigns
higher weights to the points closer to the ends of the curves, which
is important in the context of neural fiber tracts. Note that this mea-
sure does not necessarily satisfy the triangle inequality, therefore, it
is not a metric. Given two integral curves Ci = {C1

i , . . . ,Cm
i } and

Cj = {C1
j , . . . ,C

n
j } that are represented as polylines with m and n ver-

tices respectively, we first find mean weighted distances di j and d ji,
and then determine the maximum of these two distances as the dis-
tance Di j between the two curves:

di j =
1

m

m

∑
k=1

αi
kdist(Ck

i ,Cj) (1)

d ji =
1

n

n

∑
k=1

α j
kdist(Ck

j ,Ci) (2)

Di j = D ji = max(di j,d ji) (3)

The function dist(p,C) returns the shortest Euclidean distance be-

tween the point p and curve C. Also, αk = 1
Z e|k−(m+1)/2)|2/σ 2

, where

the normalizing factor Z = ∑
m
k=1 e|k−(m+1)/2|2/σ 2

. We set the param-
eter σ automatically, proportional to LC the length of the fiber tract,
such that σ = λLC, where λ ∈ (0,1]. We use λ = 0.5 for the demon-
strations in this paper.

We compute distance between each pair of integral curves as we de-
noted and assemble the measures to create a distance matrix. While
we believe our distance measure is a good approximation of the notion
of similarity in the domain, the distance visualizations described in the
following sections are independent of a particular distance measure.In
fact, in the prototype application we enable the computation of several
other distance measures.

3.2 Displaying Tract Similarity

We use the following visualization methods to display tract similar-
ity: 2D embeddings, dendograms resulting from hierarchical cluster-
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(a) (b)

(c)

Fig. 3: 2D tract embedding for different spring force settings. a)
Spring force with absolute distance displacement. b) Spring force with
absolute distance displacement, weighted by decay function and with
repulsive force. c) Spring force with relative distance displacement,
weighted by decay function and with repulsive force. In c) clusters are
tighter making selection and understanding of manifold recognition
easier.

(a)

(b)

Fig. 4: Absolute embedding error is shown added to tract distance for
an ordered set of small tract distances. Distances between tracts as
well as embedded distances were normalized to be in the [0,1] inter-
val. On the horizontal axis we line tract distances smaller than 0.05
in increasing order of magnitude. On the vertical axis we show tract
distance (light-blue) and corresponding embedding error (dark-blue).
a) Result with traditional force computation. b) Result with forces
weighted by a decay function on distance. Embeddings for small dis-
tances are smaller in the weighted case.

(a)

(b)

Fig. 5: a) Color coding by directly immersing the 2D embedding into
the L*a*b* space. b) Color coding by using the 3D color embedder
provides colors with higher saturation and more embedding resolution.

Fig. 6: A clustering cut in the dendogram view (top row) is applied
to the linked 2D embedding and 3D colorer (middle row). Points be-
longing to the same cluster are collapsed to their centroids (bottom
row).
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ing, and color coding through color embedding. In the following we
discuss the particularities of each method and the interactions they en-
able.

3.2.1 2D Embeddings

We obtain 2D embeddings of tract similarity by using Eade’s [19]
force directed method. To reduce the complexity of the computation
and achieve interactive performance Chalmer’s [13] acceleration tech-
nique is employed. Instead of computing forces on a point against
every other one, two representative and disjoint sets of constant size
are sampled and used for each point. At each iteration a set of K ran-
dom points is resampled from the entire dataset and a neighbors set
of maximum M elements is grown over all iterations by moving the
closest points from the random set. Forces on a point are computed
in relation with the M + K members of these limited sets, leading to
a single iteration complexity of O(n). We use M = 10 and K = 20
and note that our embeddings showed little variation if these values
changed.

For the force computation we use Hook’s law F = −kΔX where ΔX
is the spring displacement and k is the spring constant. We exper-
imented with variations of this force to obtain embeddings that are
better suited for neurotract interaction and analysis: a sharper defini-
tion of clusters can improve bundle selection and manifold recognition
while small distances should take embedding priority over large dis-
tances. We tried the following approaches: using squared distance to
exaggerate large distances and make clusters more defined, using rel-
ative displacement instead of absolute difference in distance to give
larger distances more arrangement flexibility, and using a combination
of weighting forces with a factor inversely proportional to distance
and adding a repulsive force between points. As Figure 3 shows, good
visual results were obtained by combining relative distance displace-

ment, forces weighted by a decay factor (e−σ/d with σ a decay factor
and d the distance), and a repulsive force (Frep = krep/d2

embed , where
krep is a constant and dembed is the embedded distance) between all
points.

For a more rigorous validation we have plotted the absolute embed-
ding error stacked on top of tube distance for an ordered subset of
the smallest distances. Figure 4 shows how using a decay function to
weight large distances less leads to smaller error for embeddings of
small distances.

Our 2D embeddings allow the following interactions: point selection,
point collapsing, and coloring. Selection is performed by clicking and
dragging; multiple selection can be performed to select points from
non-adjacent regions. Collapsing groups a set of points into a single
clustered representation. This can be used either for easier tract bundle
selection or as a mechanism for manually refining embeddings – points
belonging to the same tract bundle can be grouped together if the em-
bedding algorithm places them apart. The centroid of the grouping
will be used in subsequent embedding iterations. Finally, the 2D coor-
dinates of the embedding can be interpreted as the (a,b) coordinates
in the L*a*b* color space, and, for a given luminance, colors can be
attributed to points. The result is that close points will receive percep-
tually close colors. However, this color embedding is not ideal due to
the particularities of the L*a*b* color gamut; it has an irregular shape
and saturated colors close to the boundaries. The 2D coordinates need
to be scaled to fit into the gamut and will thus occupy within the gamut
a small, central region that corresponds to unsaturated colors. A result
is shown in Figure 5-a.

3.2.2 The 3D Color Embedder

A better coloring can be obtained, as seen in Figure 5-b, by using a
3D color embedder. We compute an approximation of the L*a*b*
color gamut, as visible on the right panels of Figure 6, and use it as
a container for force directed embedding. To avoid having to adjust a
repulsive container force, which would likely need a hard-to-control,

steep gradient, we perform a physically accurate simulation with con-
tainer contact detection. The embedding begins in the center of the
gamut and is gradually expanded until most of the space is filled. Dur-
ing implementation we observed that the largest distances are often
embedded along the luminance axis (y-axis of color gamut). This is
problematic because luminance offers little resolution and can be in-
terpreted as a lighting effect. We therefore apply a ”flattening” force
at the beginning of a simulation cycle to force large distances to lie
in the horizontal plane. These force components, acting on the y-axis
towards the center of the gamut, wear off as the embedding moves to-
wards a steady state. The force computation used is the same as for
the 2D embedding, with straightforward 3D modifications. In terms
of interaction, the color embedder only supports collapsing and color
grabbing.

3.2.3 Dendograms

Dendograms are visual representations of hierarchical trees obtained
through agglomerative clustering. We use an average linkage clus-
tering whereby the distance between two clusters is computed as the
average of all inter-cluster distances. We use a few acceleration tech-
niques to reduce the computation time: caching distances and caching
candidate clusters for merging.

To compute the tree layout we use the method described in [34]: for
each subtree the layouts for the two child trees are computed recur-
sively and placed next to each other aligned at the bottom; the root is
then placed one unit above their bounding box and in the middle of its
horizontal axis. For single node trees a unit bounding box is used.

The following interactions are implemented for dendograms: multi-
ple node selections, collapsing and expanding of individual nodes, or
collapsing nodes automatically through cluster cuts. The top row of
Figure 6 depicts a dendogram that was cut so that all clusters with
tightness higher than a certain threshold were collapsed.

3.3 Multiple-View Interaction

We allow the user to link the types of visualization described in the pre-
vious sections so that operations performed in one view are mirrored
in other views. For example, selecting points in the 2D embedding
will result in a selection in the brain model, while color grabbing in
the 3D color embedder will cause tracts to receive the corresponding
coloring information.

Depending on its implementation, a view can either act on an operation
that was passed to it or ignore it. For instance, collapsing was not
implemented in the brain model view, and we have not investigated the
opportunity of collapsing many 3D tracts into another representation
of the entire bundle. An applicable method is described in [39] and
would involve grouping collapsed tracts into fixed bundles to be used
for subsequent operations on the 3D models.

Interesting interactions are possible through this architecture. Selec-
tion mirroring would probably be the most common operation, while
color mirroring across all visualizations creates a perceptual corre-
spondence that can help the users with creating mental mappings be-
tween views.

A more interesting example is that of applying the dendogram’s
cluster-cutting operation to collapse points in the 2D or 3D colorer.
Figure 6 shows the effects that a dendogram cluster cut had on a 2D
embedding and 3D colorer: bundle selection is easier in the 2D view,
while the embedding speed in the 3D color embedder was greatly ac-
celerated. Collapsing points in the 3D colorer will result in a dis-
cretization of colors between fiber bundles. This might in fact be
a desired effect: bundles still have perceptually close colors if they
manifest similarity, but color transitions will be more abrupt and in-
crease bundle saliency. Both the 2D embedding and the 3D colorer
clusterings can be further refined interactively after a cluster cut, by
expanding or collapsing individual clusters.
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3.4 DTI Model

To generate the model used in our studies, a diffusion-weighted MRI
volume of a normal volunteer’s brain was acquired on a 1.5T Siemens
Symphony scanner with the following acquisition parameters in 12
bipolar diffusion encoding gradient directions: thickness = 1.7mm,
FOV = 21.7cm x 21.7cm, TR = 7200ms, TE = 156ms, b = 1000, and
NEX = 3. The DTI volume was then obtained by fitting 6 indepen-
dent parameters of a single second-order tensor at each voxel to the 12
measurements from diffusion-weighted MRI volume [7].

4 RESULTS

We have implemented a prototype of our method in C++ using
G3D and Qt libraries [21, 33] and made it available online at
http://graphics.cs.brown.edu/research/sciviz/braininteraction/. Fig-
ures 1 and 2 display snapshots from our prototype.

Fig. 7: Comparing 2D embeddings for multiple tract distance mea-
sures. On the right, three types of distance measures were embedded:
no end-point weight (top), weighted end-points (middle), Haussdorf
(bottom). A few tract-points were selected. On the right, the corre-
sponding 3D model is shown (top), together with the selected tracts in
isolation from unselected ones (bottom).

We evaluated our methods anecdotally. We showed our prototype to
a group of experts, including one research neuropsychiatrist and three
neuropsychologists. They were all interested in the relationship be-
tween fiber tracts and cognitive and behavioral function in the brain.
All of them have either seen or interacted with streamtube representa-
tions of fiber tracts. All have used computational tools for analyzing
DTI data. Two of the experts were interested in computational tools to
visualize tracts in planning gamma-knife surgery on intractable obses-
sive compulsive disorder (OCD) patients. The other two had research
interests in vascular cognitive impairment, early Alzheimer’s disease,
and HIV; they focused on the corpus callosum (CC), frontal lobe, basal
ganglia, cingulate bundle, superior and inferior longitudinal fasciculi,
anterior internal capsule, and the uncinate fasciculus. They have been

using DTI fiber tract analysis and visualization regularly for clinical
research.

A think-aloud protocol was used; we demonstrated the prototype using
a projector while asking questions and collecting their feedback.

There was agreement that clinical use would require additional func-
tionality for ROI analysis and more contextual information, such as
anatomical landmarks, in both the conventional view and abstract rep-
resentations.

One of the experts expressed concern over learning the correspondence
between the 2D point-cloud representation and the actual fiber-tract
collection, arguing practitioners had limited time and inclination to
learn new systems unless the tools were easily interpretable using a
conventional anatomical framework.

Our experts found that the proposed paradigm can supplement the ex-
isting tools and would be particularly useful in accelerating the selec-
tion of tract bundles. They found the coloring method to be helpful
and visually appealing, which was argued to be an important factor
for adoption of a visualization tool. Without embedded anatomical
landmarks, they found the hierarchical clustering tree to be more use-
ful than 2D representation. One interaction scenario proposed was
to select a rough region in the brain model using box selection and
then gradually refine it in the hierarchical clustering tree. Also, they
agreed that having transparent cut planes showing anatomical MR im-
ages while interacting with streamtube fiber models might be useful.

5 DISCUSSION

In this section we discuss several aspects of our work, including di-
mensionality reduction, evaluation, comparing different types of dis-
tance measure, and incorporating landmarks into embeddings.

5.1 Dimensionality Reduction

Each dimension in a visualization comes with extra cognitive and per-
ceptual load. While there are clear advantages to three-dimensional
visualizations in some contexts, previous work shows that humans are
better at understanding two-dimensional representations [15, 35]. Be-
yond reducing cognitive and perceptual load, dimensionality reduction
techniques have been popular in data mining because the “intrinsic di-
mensionality” of data is often much lower than the dimension of the
space where data is immersed. In this context, it is not difficult to
imagine fiber tracts as points on a low-dimensional manifold sitting in
a high-dimensional space, particularly when we consider fiber tracts’
locally continuous and smooth variation in the brain. So, we believe
that low-dimensional representations go beyond being interaction gad-
gets and provide new “windows” into the intrinsic structure of data.

5.2 Evaluation

While the anecdotal study provided valuable insight into the benefits
and limitations of our approach, a formal user study could help quan-
tify improvements in terms of selection speed and accuracy.

5.3 Comparing Distance Measures

The 2D embeddings can also be used for a comparative analysis of
multiple distance measures. In Figure 7 we show three different em-
beddings computed for the following distance measures: the one pro-
posed in [17], the one used in this paper, and Haussdorf distance. We
linked the embeddings to the model they were derived from. By se-
lecting points in either embedding, changes in relationships are high-
lighted in the others, while the corresponding tracts are displayed in
a fourth window. In Figure 7 we illustrate how a fiber bundle is em-
bedded depending on the particular distance measure: the first type of
measure uses only tract curvature and will thus place the three tracts
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Fig. 8: Landmark integration into a DTI model, a planar embedding and a dendogram. Ventricle is shown as white mesh in the 3D model
(top-left), as red halos around points corresponding to fiber tracts close to the ventricle mesh in the 2D embedding (bottom-left), and as red
regions marking fiber bundles close to the ventricle in the dendogram (bottom-right). On the top-right, the ventricle surface and fiber tracts
highlighted in the embeddings are shown in isolation from other fiber tracts.

that deviate from the bundle path further apart from the rest; the sec-
ond measure adds weight to tract endpoints and as such ignores the
bend in the three tracts and places all of them into the same cluster;
finally, the Haussdorf distance considers only the minimum point-to-
point distance and will thus place the tract-points together but also in
the vicinity of other tracts that, while having close individual points,
don’t necessarily display any curvature similarity. We note that for
complete brain models the differences in the embeddings were only
local and the global aspect of the embeddings, as well as the 2D rela-
tionships between major bundles, showed very little variation.

5.4 Embedding Landmarks

While preserving color throughout the different visualizations helps
create a mapping from 3D tracts to embedded points, the anecdotal
study revealed that there is a need for including additional anatomical
landmarks into the embeddings. Motivated by this, we have imple-
mented two proof-of-concept methods for showing the ventricles in
an embedding. The ventricles are connected fluid-filled cavities in the
brain that are often used as landmarks.

In one method, we find the curves within an ε distance to the surface of
ventricles. We define the distance from a curve to the ventricle surface
as the average distance from each curve-point to the closest surface
point. Users can adjust the distance threshold ε . The curves within
the ε neighborhood of the ventricle surface are highlighted in the 2D
embedding with colored halos around tract-points and in the dendo-
gram as vertical lines passing through tract-points and extending over
the entire dendogram. In both cases, this mode of representation re-
flects regions of fibers that are close to the landmark surface. Figure 8
shows the result of incorporating the ventricles into our lower dimen-
sional representations using this first method. The dendogram can be
extended to accept multiple landmarks by vertically stacking under
or above the dendogram multiple horizontal bars delimiting regions
close to landmarks. It is also important to note that it is normal for the
dendogram to contain several non-contiguous regions since multiple
bundles from different brain regions can be close to a single landmark.

In the second method we treat the major axis of the isosurface of the
ventricles as another “tract curve” (in this case a straight line) and in-
tegrate the curve into our process. Figure 9 shows the result of an
embedding with using this method. One of the clear disadvantages of
representing a landmark as a single point is that it does not convey
the shape, orientation, or scale of the landmark in the original space.
While, for simplicity, we have approximated the ventricle by its ma-
jor axis more complex approximations can be thought of: a spanning
tree of the ventricle mesh or the cross section of the ventricle with
a midsagittal plane. Note that it would also be possible to integrate
white matter landmarks (i.e., labeled clusters of fiber tracts) such as
the corpus callosum, cingulum bundle, and internal capsule into our
two-dimensional representations using a white matter atlas [31]. These
might provide the desired context.

6 CONCLUSION

We presented a new method for visualizing and navigating through
tractography data, combining two-dimensional representations of fiber
tracts with streamtube models.

Results suggest combining traditional 3D model viewing with lower
dimensional representations can ease the navigation through the com-
plex fiber tract models, improving exploration of the connectivity in
the brain. While our application interest has been in visualizing DTI
fiber tracts, the paradigm presented here is general and should be ap-
plicable to other domains.
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Fig. 9: Landmark integration into a DTI model and a planar embed-
ding: ventricle is shown as a blue mesh in the 3D model and as a large
white point in the center of the embedding.
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