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Abstract. We present a slicing-based coherence measure for clusters of
DTI integral curves. For a given cluster, we probe samples from the clus-
ter by slicing it with a plane at regularly spaced locations parametrized
by curve arc lengths. Then we compute a stability measure based on the
spatial relations between the projections of the curve points in individ-
ual slices and their change across the slices. We demonstrate its use in
refining agglomerative hierarchical clustering results of DTI curves that
correspond to neural pathways. Expert evaluation shows that refinement
based on our measure can lead to improvement of clustering that is not
possible directly by using standard methods.

1 Introduction

Diffusion-Tensor Magnetic Resonance Imaging (DTI) measures the rate of self-
diffusion due to the Brownian motion of water molecules in tissues [1]. Integral
curves showing paths of fastest diffusion are among the most common informa-
tion derived from DTI volumes, enabling the exploration of fibrous structures
such as brain white matter and muscles non-invasively in-vivo. They are gen-
erated by tracking the principal eigenvector of the underlying diffusion tensor
field in both directions [2] and often visualized as streamlines or variations of
streamlines (streamtubes and hyperstreamlines) in 3D [3]. However, these 3D
models are generally visually dense making it difficult for experts to ascertain
anatomical and functional structures clearly. Therefore, there is a considerable
interest in developing effective clustering methods.

In this context, we introduce a measure of coherence for a “hypothesized”
cluster of curves. The cluster coherence measure we propose relies on evaluat-
ing the stability of further subdivision of the cluster. To this end, we use the
configurations at what we call “slices”– cross-sections of the cluster. Each slice
is effectively an embedding of the curves into points in two-dimensional space.
These points can be clustered using any off-the-shelf clustering algorithm. Each
slice therefore provides a “vote” for each pair of curves being together or sepa-
rate in the overall clustering. Furthermore, assuming reasonable smoothness of
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the curves, we can assess the temporal coherence of these votes: two adjacent
slices carry more weight voting the same way than if their votes are opposite.

We demonstrate our measure’s use to improve an agglomerative hierarchical
clustering algorithm that has been shown to be working relatively well in cluster-
ing integral curves corresponding neurofibers [4]. When our slice-based method
detects that a stable split exists in the cluster, it provides a specific partition-
ing, that can be used as part of a clustering algorithm. Expert evaluation shows
that this mechanism may be superior to the standard hierarchical clustering ap-
proach. While our primary motivation in designing the slicing-based coherence
measure is the task of refining an initial clustering assignment, it can be used
for validating clusterings, quantifying connectivity or parametrizing clusters.

In the next section we discuss related work briefly, focusing on clustering
methods. We then describe the details of the slice-based coherence measure in
Section 3. Its application in improving hierarchical clustering results is described
in Section 4, followed by discussion and conclusion in Section 5.

2 Related Work

There have been several clustering methods proposed for DTI curves. All of them
are adaptations of some of the well-known clustering methods including fuzzy
c-means (a variation of k-means) [5], agglomerative hierarchical clustering [6,7],
and spectral clustering [8,9]. An evaluation of the most popular fiber clustering of
algorithms can be found in [4]. While we are not aware of any coherence measure
specific to DTI integral curves (or 3D curves of any origin, for that matter), we
found stability (or confidence) argument for cluster analysis in statistics to be
common [10,11,12] and often used to compare and validate clustering methods.

Fig. 1. Illustration: the cluster is sliced using the arc length ratio α = 0.2. Crosses
(black): points on the curve corresponding to the arc length parameter αSi. Circles
(red): projections on the slicing plane. The bottom-right legend shows the embedding
of the curves in the axis-aligned plane of the current slice.
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In this context, our notion of stability can be seen as an internal geometric index
primarily aiming to quantify the quality of hypothesized individual clusters.

3 Slicing and Cluster Stability

The basic idea of our method is to assess the behavior of curves, that comprise
a candidate cluster, relative to each other in a number of cross-sections (slices).
A clustering pattern with more than one clusters, consistent over neighboring
slices, is found, the cluster is considered incoherent, and split, with the splitting
details deduced from the slices. Otherwise, the cluster is considered coherent,
and preserved intact. Note that a clustering pattern in our case is a particular
number of clusters and cluster membership. Therefore, consistency of a clustering
pattern suggests consistency in number of clusters as well as consistency in
cluster membership.

3.1 Slicing a Candidate Cluster

Given a cluster of undirected curves X1, . . . , XN in R
3, we first orient the curves

(in the sense of assigning start- and end-point designations), in a way that makes
orientations consistent within the cluster. This is done by computing the start-
to-end vector for each curve and iteratively re-orienting the curves until all the
vectors are in the same half-space.

Next we sample each curve uniformly along its path in the following manner.
Let Si be the arc length of the curve Xi; i.e., the curve can be parametrized
as X(s) where s goes from 0 to Si (arc length parametrization). We take M

samples x
(1)
i , . . . , x

(M)
i from each curve such that x

(m)
i = Xi(αSi) where α = m

M .
Note that while the arc length ratio α is the same at the mth sample for all
curves, the arc length parameter αSi will be different for each curve unless the
curves have the same arc length. In other words, the arc length distance from
the beginning of the curve to xi(m) will be different for every curve in general.

Now for each m, we have a point set X(m) = {x
(m)
1 , . . . x

(m)
N }. Each point

set is then projected onto a two-dimensional slicing plane. Intuitively, we would
like this plane to be normal to the “cluster tangent” at a given arc length. We
estimate this by computing the tangent τ

(m)
i to the i-th curve at x

(m)
i and aver-

aging this direction over the curves, to yield τ (m). The slicing plane is spanned
by the columns of the 3 × 2 matrix Pm that are set to be orthonormal and
orthogonal to τ (m). Furthermore, we require the plane to pass through the mean
location μ(m) = 1

N

∑N
i=1 x

(m)
i . The geometry of this construction is illustrated

in Figure 1.
This slicing mechanism is motivated by the following intuition. Suppose that

the cluster is coherent, i.e. the curves comprising it follow similar paths. In that
case, the slicing plane will be close to normal to the tangent of each individual
curve, and moreover the points corresponding to the m-th sample will be close in
space. On the other hand, if the cluster contains a number of distinct subgroups,
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there will be two sets of samples, which will be clustered around distinct sub-
means. Moreover, in such a case we can expect that projecting those samples
onto the slicing plane, orthogonal to the cluster, will emphasize the separation
between the subgroups.

Given the m-th slicing plane, we represent the cluster by a set of two-
dimensional projections, which we call the “slice”, Y (m) = {y(m)

1 , . . . ,y(m)
N }:

y(m)
i = PT

m(x(m)
i − μ(m)) (1)

Before we proceed, we note that an alternative slicing technique could be based
on fitting a plane to X(m) using Principal Component Analysis [13]. A straight-
forward application of this in our experiments has proved inferior to the tangent-
based technique described above, due to the effect of outliers. This could be
alleviated by using robust PCA; we do not, however, pursue it further in this
paper.

3.2 Cluster Co-membership within Slices

We now treat each slice separately. Effectively, each slice is an embedding of
the set of curves into two-dimensional space. The set of points in this space
can in principle be clustered using any off-the-shelf clustering method. However,
we are specifically interested in determining whether there is an “interesting”
partition in the slice. Therefore, of most interest to us are methods that allow
automatic determination of the number of clusters. We use the Gaussian mixture
clustering, accompanied by the Bayesian Information Criterion (BIC) for setting
the number of components [14,15].

3.3 Spatial and Temporal Coherence

Once a Gaussian mixture model has been fit to the slice Y (m) for a range of
values of k, we select the optimal model based on BIC. With the mixture model,
we cluster the data by assigning each point to the component with the highest
responsibility (i.e., the highest posterior probability of the point drawn by the
associated Gaussian distribution). We will denote the label of y(m)

i by c
(m)
i .

There is of course no direct relationship between the cluster labels across slices,
since those are assigned arbitrarily. Even if the same partition of the curves to
two clusters is reached in two slices, a given set of curves could be labeled 1 in
one slice and 2 in the other slice. The information of interest to us is conveyed
by the co-membership of a given pair of curves in a particular slice. Specifically,
we define J

(m)
ij such that

J
(m)
ij =

{
1 if c

(m)
i = c

(m)
j ,

0 otherwise.
(2)

Intuitively, the m-th slice votes for Xi and Xj being in the same cluster if
J

(m)
ij = 1. One could now simply combine the values of this vote across all
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slices. However, it is possible for a particular pair of curves to be separated by
the clustering in a given slice m simply due to the randomized nature of the
procedure (placement of slicing plane, random initialization of the EM, etc.)
despite genuinely belonging to the same subgroup. If indeed such an accidental
result occurs, we expect that it will not persist in the neighboring slices, m − 1
and m+1. This suggests the notion of temporal coherence. We formalize it with
the value T

(m)
ij defined as

T
(m)
ij =

{
1 if J

(m)
ij = J

(m−1)
ij and J

(m)
ij = J

(m+1)
ij ,

0 otherwise.
(3)

Finally, we can now represent the vote of the m-th slice regarding the similarity
of curves i and j, weighted by the temporal coherence of that slice (with respect
to that pair!):

W
(m)
ij = (1 − J

(m)
ij ) · T

(m)
ij . (4)

W
(m)
ij takes the value of 0 or 1. When it is 1, it indicates that the m-th slice

supports a split where Xi and Xj are separated. W
(m)
ij with 0 value, on the other

hand, does not mean that the slice supports keeping Xi and Xj in the same
cluster. It simply means that there is no evidence to the contrary. This may be
due to the two curves being separated in the slice (zero co-membership), or the
lack of temporal coherence, i.e., the co-membership of i and j being unstable in
this slice–or both. This sort of asymmetric reasoning is similar in spirit to the
statistical hypothesis testing formalism, in which the null hypothesis is either
rejected or not, but never “accepted”. In our case, this reflects the notion that
not splitting the cluster is the default action.

We are now ready to describe the algorithm for evaluating the coherence of the
cluster. Given the set of curves, we calculate a set of M slices, and cluster each
of them using the Gaussian mixture clustering, with BIC model selection. We
then compute the cluster co-membership values J

(m)
ij and the temporal coherence

T
(m)
ij for each m = 1, . . . , M and i, j = 1, . . . , N . This yields for each pair i, j a

set of M votes W
(m)
ij . We combine the evidence regarding Xi and Xj across all

slices in a single value:

Wij = M −
M∑

m=1

W
(m)
ij . (5)

This provides us with a measure of similarity for each pair of curves, organized
in the form of an N × N matrix W. By default, its diagonal is set to zero. For
example, a value of 0 indicates that the two curves are consistently separated in
all slices; the value of M indicates that no evidence for separating the two curves
is provided by any of the slices. It is important to note that our similarity values
are computed in the context of the given cluster, specifically with the objective
to evaluate potential splits. This is in contrast to “global” distance measures,
that operate on the same scale throughout the data set.
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4 Refining Hierarchical Clustering Results

Given initial hypothesized (candidate) clusters as a result of hierarchical clus-
tering, we evaluate the decision of splitting the cluster by applying the spectral
clustering algorithm described in [16] to W. Briefly, the algorithm is based on
eigendecomposition of the symmetric matrix D−1/2WD−1/2, where D contains
the sums of corresponding rows of W on its main diagonal and zeros everywhere
else. When two clusters are requested, the algorithm divides the data according
to the sign of the corresponding entries of the N × 1 second largest eigenvector
of the matrix above. Note that this can lead to either two clusters, or a single
one (if all the entries in the eigenvector are of the same sign).

4.1 Expert Evaluation

In order to assess the utility of our method for a practitioner, we conducted
a comparative evaluation study with a domain expert. The fiber tracking data
used in our experiments were obtained from DTI brain data sets scanned from
four volunteers. We first obtained initial candidate clusters by applying the sin-
gle linkage hierarchical clustering algorithm, with a distance measure adapted
from [3]. Note that the adapted distance measure does not prevents curves
with radically different lengths to be in the same cluster. Let D represent the
similarity matrix obtained using this distance measure. We used the cut-off
threshold of 3 (set heuristically to produce reasonable cluster sizes). The ex-
pert has significant experience with DTI and uses fiber-track models (integral
curves) generated from DTI data sets in clinical research regularly. We com-
pared three methods. The first one is our slicing-based method described above;
we used M = 50 slices for each candidate cluster. The second method applies the
single-linkage hierarchical clustering algorithm on D for the candidate cluster,
with the objective of obtaining two sub-clusters. In other words, this method
finds the optimal split of the appropriate subtree in the original dendrogram.

slicing hierarchical spectral
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Fig. 2. Ranking frequencies of each cluster-
ing method for 93 cases as evaluated by an
expert

The third method applies the spec-
tral clustering algorithm as does our
method, but it uses the similarity
matrix D.

We displayed 93 cases where at
least one of the methods produced
a different split to the expert. The
expert was shown the results from
the three methods side-by-side, and
asked to rank them. The evaluation
was blind (i.e., the expert was not
told which of the methods produced
each result). We used a streamtube
representation for the curves and
juxtaposed clusters with the sur-
face of lateral ventricles (areas of
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Fig. 3. Examples of clusters where our method was ranked to be the best by the expert.
Split, if exists, is visualized by two colors (red and blue). The surface of lateral ventricles
(green) provides an anatomical landmark. Left: the slicing-based split. It works well on
clusters with curves having high curvatures as well as varying arc lengths. Middle: split
based on the dendrogram used in hierarchical clustering. Right: split based on spectral
clustering using the distance measure used to obtain the initial candidate clusters.

cerebrospinal fluid in the brain) extracted to provide an anatomical landmark.
The expert were able to interactively manipulate the viewpoint,zoom-in and out,
and rotate the models. The ranking decisions were based on the following crite-
ria: anatomical correctness (whenever the expert recognized a candidate cluster),
anatomical and physiological plausibility, and amount of information conveyed
by the resulting clustering. The goal in this scenario is to evaluate whether the
resulting clustering decision helps to identify biologically distinct structures in
the DTI data.
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4.2 Results

Out of 93 cases considered, 20 were ranked as three-way ties (i.e., undecided,
equally good, or equally arbitrary). In the remaining 73, the expert ranked our
slicing-based method the best method in 49 cases while only in 9 of these cases
there was another method ranked the same. Furthermore, our method ranked
worse than the other two methods only in one case. We summarize these results
in Figure 2. In Figure 3, we show examples where our method produced better
results (according to the expert feedback) than the other two methods.

5 Discussion and Conclusions

The main contribution of this paper is the novel coherence measure that is ob-
tained by combining an intuitive geometric idea, slicing, with known statistical
machine learning techniques. An important property of our method is its reliance
on the context of the cluster in evaluating similarity between curves. The quan-
tities computed in each slice, and across slices, are tied directly to the clustering
objective. This is in contrast to the more standard setup in which distances and
thresholds are defined in the global context. Our method works reasonably well
on clusters with curves having high curvatures and varying arc lengths. While
our motivation and the experimental evaluation have been on 3D DTI integral
curves, our method generalizes to higher and lower dimensions easily and may
apply to curve data in other domains. There is a number of technical aspects that
we believe could be improved. Specifically, a more robust slicing and projection
method that explicitly down-weights outliers could help reduce uncertainty in
the per-slice quantities. Also, while we are not aware of any “gold standard” DTI
fiber-track clustering data set, it is still possible to validate our method more
quantitatively. The approach taken by Mobert et al. [4] can be a good starting
point. A more challenging extension of the idea of slicing that we would like to
pursue is to build a semi-parametric generative model for a cluster. Although
our primary interest is in the analysis of DTI data, we believe our method is
general and can be applied to any domain where data instances are represented
by curves or trajectories.
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