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ABSTRACT
Despite rapid developments in the field of machine learning re-
search, collecting high quality labels for supervised learning re-
mains a bottleneck for many applications. This difficulty is exac-
erbated by the fact that state-of-the art models for NLP tasks are
becoming deeper and more complex, often increasing the amount
of training data required even for fine-tuning. Weak supervision
methods, including data programming, address this problem and
reduce the cost of label collection by using noisy label sources for
supervision. However until recently, data programming was only
accessible to users who knew how to program. In order to bridge
this gap, the Data Programming by Demonstration framework was
proposed to facilitate the automatic creation of labeling functions
based on a few examples labeled by a domain expert. This frame-
work has proven successful for generating high accuracy labeling
models for document classification. In this work, we extend the
DPBD framework to span-level annotation tasks, arguably one of
the most time consuming NLP labeling tasks. We built a novel tool,
TagRuler, that makes it easy for annotators to build span-level la-
beling functions without programming and encourages them to
explore trade-offs between different labeling models and active
learning strategies. We empirically demonstrated that an annotator
could achieve a higher F1 score using the proposed tool compared
to manual labeling for different span-level annotation tasks.
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1 INTRODUCTION
In recent machine learning research, supervised learning has re-
mained a dominant approach in situations where accuracy is criti-
cal. This is despite the increasing complexity of models, which in
turn requires more training data, even when taking advantage of
pre-trained models (as they frequently still require large refined
datasets for supervised fine-tuning). In many cases, labels are manu-
ally annotated by humans and can require from tens to hundreds of
thousands of examples [17]. For example, one of the state-of-the-art
open domain named entity recognition models [14], used more than
a million data samples. Thus, the need for big amounts of labeled
data and subsequent human efforts are still a big bottleneck in the
recent NLP field.

Weak Supervision and Data Programmming. One common
approach to reduce the need for labeled data is to rely on weak
supervision methods [10, 15]. Such methods suggest using noisy
(thus, cheaper) label sources for supervision to reduce the label-
ing cost. Crowd-sourcing [12] and user-defined heuristics [8] are
among frequently used label sources to assign noisy training labels
to available unlabeled data. Another alternative, which is gaining a
lot of attention in recent years is data programming (DP) [17]. In
particular, DP focuses on the process of generating domain knowl-
edge from domain experts in the form of labeling functions using
programming language.

def lf(x):

if "http" in x: return SPAM

else: return ABSTAIN

The above code snippet shows a simple example of a labeling func-
tion (written in Python) for spam classification task. A main limita-
tion of data programming is that domain experts for many difficult
natural language tasks (e.g. medical document annotation, legal
document annotation, etc.) may not have experience in program-
ming, making it difficult for them to create such labeling functions.

Data Programmming by Demonstration (DPBD). Aiming at
bridging the gap between domain experts and labeling functions
creation, Ruler [6] proposed the concept of Data Programming by
Demonstration. DPBD is a human-in-the-loop model for synthe-
sizing labeling functions through interactive user feedback, elimi-
nating the need for domain experts to learn programming skills to
leverage data programming. In this paper, we introduce TagRuler,
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Figure 1: The Data Programming By Demonstration (DPBD)
framework. Straight lines indicate the flow of knowledge,
and dashed lines indicate the flow of data.

an open-source web application system that extends the DPBD
framework to span-level annotation tasks. TagRuler includes a set
of new features and characteristics that are not explored before in
Ruler. More specifically, in TagRuler we adapted the DPBD main
components to fit the span-level annotation problem and added
new models. TagRuler implements four different models and allows
users to explore the trade-offs afforded by each.

We designed TagRuler to optimize usability by carefully select-
ing atomic conditions for span labeling rules. Based on results
previously described in the literature (e.g. BabbleLabble [9]), lexical,
semantic, syntactic, and entity-type match rules were incorporated
into TagRuler, in addition to the possibility of using the negation
operator. We implement semantic rules via similarity based on con-
textual token embeddings (BERT [5] and ELMo [16]). In addition
to the active learning approach previously implemented in Ruler,
TagRuler proposes a novel active learning component focusing on
false positives, thus contributing to one of the main challenges in
data programming: surfacing difficult (or borderline) labeled exam-
ples [20]. In this active learning approach, unlabeled examples that
have higher potential to identify false positives will have higher
probability to be sampled as next instance to be labeled. It aims to
achieve maximum accuracy with a small number of interactions
combined with uncertainty-based sampling.

Contributions. This work presents the following contributions:
• proposes a token labeling model which incorporates logical
combinations of expressive atomic rules.

• implements state-of-the-art sequential label aggregationmod-
els.

• adds an active learning component based on false positives.
• demonstrates the effectiveness of TagRuler through evalua-
tion on use-cases from two domains.

• makes the underlying code1, example data, and video demo2
publicly available in order to make span-level data program-
ming for text more accessible to researchers and annotators.

2 SYSTEM OVERVIEW
Figure 1 shows the architecture of DPBD framework that was pro-
posed by [6]. In this section, we describe how TagRuler extends
each component of the DPBD framework for span-level annotation,
or tagging task. We also describe how each component is connected
to the TagRuler’s user interface shown in Figure 2.
1Code available at https://github.com/megagonlabs/tagruler.
2A video demo can be found at https://youtu.be/MRc2elPaZKs.

2.1 Labeling Interface
TagRuler provides a web-based interactive system that facilitates
users to encode their domain knowledge for span annotation into
labeling rules. To this end, TagRuler provides the main text view
(Figure 2 (A)) where user interacts with a text data sample. The main
text view shows a single text data and supports labeling operations.
The user annotates spans by highlighting them with the cursor.
Next, one assigns a label to the selected spans by choosing one from
the options displayed. The user also can indicate if the selected span
is a positive or negative sample by clicking the (+) or (-) signs that
pop up as a span is selected. Once labels are assigned to selected
spans, the synthesizer compiles the selections and generates a set
of relevant labeling functions.

2.2 Synthesizer
The synthesizer translates the annotations into atomic rules and
generates a candidate set of labeling functions (in programming
language) using the rules. TagRuler implements atomic rules which
are specifically for span annotation tasks. Following previous works
on rule-based labeling models [9, 19], we focus on capturing seman-
tic, syntactic, and entity-type information of the spans. The created
labeling functions are shown in the labeling function view (Figure 2
(B)), and the user selects relevant labeling functions and delivers
them to the model. The selected labeling functions are shown in Fig-
ure 2 (C) with corresponding statistics (accuracy and coverage) of
each labeling function. Lastly they are aggregated by the modeler
and used to produce accuracy feedback in an iterative process.

2.2.1 Contextual similarity rules with neural embeddings. For se-
mantic similarity, we implement two dense vector representation
(embeddings) rules, SIMILAR_BERT() and SIMILAR_ELMO() rules,
which are based on BERT [5] and ELMo [16], respectively. Both
return True if the embeddings of the two input tokens have higher
cosine similarity then pre-defined threshold values. We use the pre-
trained models since they are able to capture contextual semantics
considering the structure of sentences implicitly. During demon-
stration, we observed that SIMILAR_BERT() and SIMILAR_ELMO()
work differently and are complementary. As BERT has been the
state-of-the-art contextual language model, it has more strength
in capturing semantic and syntactic information implicitly at the
same time. ELMo outputs more stable results for out-of-vocabulary
words since it is a character-based model. This functionality is es-
pecially important when a user works on highly domain-specific
data sets since they tend to include rare vocabularies that were
under-trained in the BERT model. We observed this effect when
testing TagRuler on a medical dataset.

2.2.2 POS, dependency parse, and NER tag rules. Syntactic infor-
mation of word is also important to build expressive rules. Two
representative ways of extracting the syntactic information are Part-
of-Speech (POS) tagging and dependency parsing, which capture
shallow and deeper syntactic structure, respectively. Specifically,
we implement POS() and DEP() rules. Both return True if two in-
put tokens have same POS and DEP tags, respectively. Similarly,
TagRuler supports usage of NER() rule which returns True if in-
puts have a same named entity recognition (NER) tag (in our case,
18 classes provided by spaCy [11]) To detect POS, dependency,

https://github.com/megagonlabs/tagruler
https://youtu.be/MRc2elPaZKs


TagRuler: Interactive Tool for Span-Level Data Programming by Demonstration WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia

Figure 2: Overview of TagRuler. (A) Main text view lets users annotate text spans with relevant class names. (B) Labeling func-
tion view shows a list of labeling functions suggested by TagRuler. The user is expected to select relevant labeling functions
that align with their domain knowledge. (C) Selected labeling function view shows statistics about the user-selected functions.
(D) Label model view shows statistics of the label model trained on currently selected labeling functions.

and NER tags, we used the spaCy Python library [11] which have
achieved near-human performance for each task.

2.3 Modeler
The modeler creates weak supervision labels and associated prob-
abilities by using the output of labeling functions selected by the
user. That is, given a set of labels L, and a label matrix 𝑀 ∈
{1, 2, . . . , |L|}𝑛×𝑙 generated by 𝑙 labeling functions applied to 𝑛

tokens, the modeler fits an aggregation model and produce a matrix
𝑃 ∈ R𝑛×|L | where 𝑃𝑖, 𝑗 denotes the probability 𝑃 (𝑙𝑎𝑏𝑒𝑙 (𝑡𝑜𝑘𝑒𝑛𝑖 ) ==
𝑗 |𝑡𝑜𝑘𝑒𝑛𝑖 ). The resulting probabilistic labels are applied to a small la-
beled development set, and their accuracy is shown to the user in the
label model view (Figure 2(D)) in real time. TagRuler implements
four different models: Snorkel [17], HMM [19], FlyingSquid [7],
and Majority Voter to aggregate and generate probabilistic labels.
Snorkel, HMM, and FlyingSquid are probabilistic graphical models
that capture dependency structure between tokens and labeling
functions. In particular, HMM and FlyingSquid support sequential
dependence structure, while others do not. It is important to use the
appropriate method as modeler, since there is a tradeoff between
the time it takes to fit the model (which hampers interactivity) and

the accuracy. At the beginning of a session, users can select the
model most appropriate for their use-case.

2.4 Active Sampler
TagRuler is a system designed to learn from expert knowledge, and
expert manual annotation is expensive, so it is important to obtain
informative data with as few annotations as possible. The active
learning approach focuses on contributing to this main challenge
in data programming: generating difficult (or borderline) exam-
ples [20]. TagRuler samples the text to be displayed in Figure 2
(A) after each annotation using an active learning technique that
leverages the trained label model and a small labeled development
set.

TagRuler’s active learning approach is motivated by the fact
that there is a small set of ground truth in the DPBD setting. In
this approach, unlabeled examples that have higher potential in
identifying and reducing false positives will have higher proba-
bility to be sampled as next instance to be labeled. First, the ac-
tive sampler selects the data record 𝑥∗ from the development set,
which shows the greatest error in predicting the true label, i.e.
𝑥∗ = argmin𝑥 𝑝 (𝑙𝑎𝑏𝑒𝑙𝑡𝑟𝑢𝑒 (𝑥) |𝑥). Then, the sampler samples the
most similar text from train set using cosine similarity between



WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia Choi et al.

sentence embedding vectors. For sentence embeddings, we use the
Sentence-bert [18] model. This model is based on the BERT model
so that the embeddings can be comprehensive representation of
syntax and semantics of texts. TagRuler implements an active sam-
pler that alternately samples based on the proposed method and
the uncertainty-based sampler used by Ruler [6] so that it can ad-
vantage of both methods in turn, reducing variance as ensemble
models do.

Figure 3: Individual selected labeling function view with
false positives and statistics. A user can identify falsely la-
beled ground truth examples and potentially labeled train
examples.

2.5 False Postive Feedback
TagRuler helps users correct their mistakes and develop improved
labeling functions. When a user clicks the ⃝𝑖 button located to
the left of each labeling function in the selected labeling function
view (Figure 2(C)), false positive feedback and detailed statistics
of the corresponding labeling function are displayed as shown
in Figure 3. During our demonstration session, the false positive
examples shown by the system were crucial and helped achieving
better F1 score and also helped users to identify wrong ground-
truth instances (meaning that the labeling guideline had changed
since the ground truth was labeled, or that the labelers used for the
ground truth were not reliable).

3 USE CASES AND OBSERVATIONS
In order to demonstrate the efficacy of TagRuler, we demonstrate
our findings from <30 minutes trial labeling sessions on two do-
mains. We recorded the accuracy obtained in these sessions by
time and found that TagRuler was superior when compared to a
simulated manual labeling session for the same time period.

3.1 Data and Tasks
We used two real world datasets: BC5CDR [23], and Yelp Restau-
rants [1]. Each dataset was labeled for 30 minutes using TagRuler.
Table 1 shows more information about the data. BC5CDR is a medi-
cal dataset [23] where each token is annotated as either a chemical,
disease, or neither. The medical domain is a prime example of a field
where training data is expensive or difficult to obtain, as the labeler
requires a high level of expertise and their time is very valuable
and limited. This makes it a good use-case for weak-supervision
approaches if we can make them accessible. Yelp Restaurants is a set
of restaurant reviews [1] annotated with aspects (ex: food, service)

Table 1: Summary of datasets used for our trial sessions.

Dataset # Doc Avg. Tokens/Doc Class Frequency

BC5CDR 866 381.6 Chemical: 0.063
Disease: 0.079
Other: 0.858

Yelp Restaurants 838 36.5 Aspect: 0.100
Opinion: 0.114
Other: 0.786

and opinions about those aspects. Once TagRuler is used to build
relevant labeling functions, we can apply the labeling functions to
any extension of the datasets and automatically generate training
labels.

The labeling tasks of TagRuler were carried out by one of the
authors who is not a subject matter expert for these tasks. We hope
that with a little background information about data programming,
domain experts would achieve similar results (or better, due to their
increased knowledge of the domains). As a baseline to compare
the results of TagRuler’s weak labeling and manual labeling, we
sampled text examples randomly from the labeled ground truth, at
a rate equivalent to the annotator speed for the task. We believe
that this is a generous estimate, since with TagRuler the user only
has to label a few representative tokens, and not every instance in
the document. TagRuler’s majority voter model’s output and the
randomly sampled examples were then used to train CRF models
which we evaluate based on their test accuracy scores (micro F1
scores).
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Figure 4: Comparison of TagRuler and simulated manual la-
beling. Line charts show change in accuracy (micro F1 score)
per each text example over time.

3.2 Observations
From less than 30 minutes of labeling BC5CDR dataset, we were
able to achieve an F1 score 0.516 from a CRF model trained on
TagRuler’s generated labels. With the same time period, the simu-
lated manual labeling ended up an F1 score of 0.363 (Figure 4 left).
On Yelp Restaurants dataset, we achieved an F1 score of 0.564 with
a CRF model trained on TagRuler’s output in 26 minutes while the
simulated manual labeling reached 0.433 in the same time period
(Figure 4 right). The active sampling helped discover some inconsis-
tencies in the ground truth labels. With TagRuler, we don’t need to
have high confidence in the ground truth labels– the most reliable
ground truth is the domain expert, and TagRuler can leverage this
to surface edge cases or changing guidelines.
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4 RELATEDWORK
Both TagRuler and Ruler share concepts and ideas from rule-based
information extraction [4] and exploit those ideas to make it easier
for domain expert to leverage Machine Learning models and data.
This is in contrast to systems like PropMiner [2], which focus
on generating highly reliable rules for information extraction, as
opposed to data programming which relies on a mix of high and low
precision rules that make independent errors (like those generated
by TagRuler and Ruler).

The idea of systems and agents that learn by demonstration
or by natural language explanation have also been explored in
other domains, such as in PUMICE, an agent proposed by [13]
that uses the combination of natural language programming and
programming-by-demonstration to allow users to describe tasks
in natural language at a high level, and then starts a collaborative
process with the user to recursively resolve ambiguities or vague-
ness through conversations and demonstrations. Or in the classical
artificial intelligence problem of automated synthesis of programs
that satisfy a given specification [22].

Natural Language Programming has also been applied to Data
Programming as in BabbleLabble [9]. BabbleLabble allows the label-
ers to use natural language explanations during the labeling process
to generate labeling functions. A semantic parser is then used to
convert the natural language explanations into logical forms, which
represent labeling functions. The labeling functions are then aggre-
gated using the traditional Data Programming approach proposed
in Snorkel [17]. We hope TagRuler can complement such an ap-
proach by giving users a different, more expressive set of atomic
rules.

The difficulty in having Domain Experts capable of generating
labeling functions that can go beyond easy and redundant examples
is also tackled in SNUBA [21] and in the framework described in
[3]. In SNUBA, a semi-supervised data programming setting is
proposed. But instead of counting on user interactions, SNUBA
proposes an automatic generation of labeling functions by using a
small set of labeled data, andwithout user interaction. In [3], queries
to be annotated are not data points but labeling functions, and the
approach is based on training supervised ML models (instead of
Data Programming, as done in TagRuler) with weak supervision
through an interactive process.

Finally, span-level annotation has also been explored in the con-
text of Data Programming in the approach proposed in FlyingSquid
[7], but as happens in Snorkel, FlyingSquid also requires that the
user have programming literacy.

5 CONCLUSIONS
TagRuler is an open-sourced web-based system that enables users
to create span-level annotation functions through intuitive inter-
actions. It requires no programming literacy, yet reliably expands
user annotations to expressive rules. TagRuler’s labeling model
builds on, and extends, state-of-the-art Data Programming meth-
ods, improving user experience and making the techniques more
accessible. Through experiments on two datasets, we demonstrated
that an annotator using TagRuler could achieve a higher F1 score
compared to manual labeling, allowing faster development of tag-
ging models. By open-sourcing this technology, we hope to improve
the accessibility of deep learning models for NLP.
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