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Abstract

Data programming aims to reduce the cost of
curating labeled training data through a pro-
grammatic weak supervision approach. Writ-
ing data programs (labeling functions) re-
quires both programming literacy and domain
expertise. However, many domain experts lack
programming proficiency and transferring do-
main expertise into labeling functions by enu-
merating rules and thresholds is not only time
consuming but also inherently difficult. Here
we introduce RULER, an interactive system
that synthesizes labeling rules using span-level
interactive demonstrations of users on docu-
ment examples. RULER is an instance of
data programming by demonstration (DPBD),
a new framework that aims to relieve the bur-
den of writing labeling functions from users,
enabling them to focus on higher-level seman-
tics such as identifying relevant signals for la-
beling tasks. We compare RULER with conven-
tional data programming through a user study
conducted with 10 data scientists creating la-
beling functions for sentiment and spam clas-
sification tasks. Results show RULER is easier
to use and learn and offers higher overall satis-
faction, while providing discriminative model
performances comparable to ones achieved by
conventional data programming.

1 Introduction

Machine learning (ML) models used in practice to-
day are predominantly supervised models and rely
on large datasets labeled for training. However, the
cost of collecting and maintaining labeled training
data remains a bottleneck for training high-capacity
supervised models [34].

Weak supervision methods such as crowdsourc-
ing [18], distant supervision [28], and user-defined
heuristics [12] enable the use of noisy or impre-
cise sources to gather large training datasets. Data
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Figure 1: RULER enables the user to interactively gen-
erate a diverse set of labeling functions through simple,
non-programmatic text annotations. Dynamically up-
dated statistics allow the user to quickly test and evalu-
ate ideas.

programming [6, 32, 33] aims to address the dif-
ficulty of collecting labeled data by using a pro-
grammatic approach to weak supervision by heuris-
tics, where domain experts are expected to provide
data programs (labeling functions) incorporating
their domain knowledge. Prior work on data pro-
gramming focuses on modeling and aggregating
labeling functions written manually [32, 33] or gen-
erated automatically [16, 37] to denoise labeling
functions. However, little is known about user ex-
perience in writing labeling functions and how to
improve it [8]. Writing data programs can be chal-
lenging. Most domain experts or lay users have no
or little programming literacy, and even for those
who are proficient programmers, it is often difficult
to convert domain knowledge to a set of rules by
writing programs.

In response, we introduce RULER (Figure 1), an



interactive system that enables more accessible data
programming to create labeled training datasets for
document classification models. RULER automati-
cally generates labeling rules from users’ labeling
rationales or intents demonstrated with span-level
annotations and their relations on specific examples.
Underlying RULER is our data programming by
demonstration (DPBD) framework, which RULER
operationalizes for text documents.

DPBD is a new framework that aims to make
creating labeling functions easier by learning
them from users’ interactive visual demonstrations.
DPBD moves the burden of writing labeling func-
tions to an intelligent synthesizer while enabling
users to steer the synthesis process at multiple se-
mantic levels, from providing rationales relevant
for their labeling choices to interactively filtering
the proposed functions. We partly built DPBD on
the basis of two lines of prior research. The first is
programming by demonstration (PBD) or example
(PBE), e.g., [11, 25], which aims to make program-
ming easier by synthesizing programs based on
user interactions or input and output examples. The
second is interactive learning from user-provided
features or rationales [40, 41].

Through a user study conducted with 10 data sci-
entists, we evaluate RULER alongside manual data
programming using Snorkel [32]. We measure the
predictive performances of models created by par-
ticipants for two common labeling tasks, sentiment
classification and spam detection. We also elicit
ratings and qualitative feedback from participants
on multiple measures, including ease of use, ease
of learning, expressivity, and overall satisfaction.
We find RULER facilitates more accessible creation
of labeling functions without a loss in the quality
of learned labeling models.

Our main contributions include (1) DPBD, a gen-
eral data independent framework for interactively
learning labeling rules; (2) an interactive system
RULER based on our framework to enable labeling
rule generation by interactive demonstration for
document classification tasks; and (3) a compar-
ative user study conducted with data scientists in
performing real world tasks to evaluate RULER and
conventional data programming. We also make our
research artifacts, including the RULER code and
demo, publicly available '.

"https://github.com/megagonlabs/ruler
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Figure 2: Overview of the data programming by

demonstration (DPBD) framework. Straight lines in-
dicate the flow of domain knowledge, and dashed lines
indicate the flow of data. By extending data program-
ming with programming by example, we bridge the gap
between scalable training data generation and domain
experts.

2 DPBD Framework

Problem Statement Given a dataset D =
{dy,...,dny} of data records and a set of labels
L = {ly,...,l,}, we aim to develop a frame-
work that enables human labelers to interactively
assign a label from L for each data record effi-
ciently sampled from D’ C D (|D'| < |D|),
while demonstrating their rationales for label as-
signments through visual interaction. Given a
triplet (d;, v;,1;) of a data record, a visual inter-
action from the labeler, and the label assigned, we
want this framework to effectively synthesize and
propose labeling rules R;; = {r1,...,r;} for the
labeler to choose from. Finally, we want the frame-
work to optimally aggregate all the chosen rules
(labeling functions) in order to create a labeled
training set from D\ D’ with probabilistic labels in
order to subsequently train discriminative models
on it.

Framework Overview The data programming by
demonstration (DPBD) framework (Figure 2) has
two input sources: a human labeler, and the data
that is to be labeled. The labeler is the subject mat-
ter expert who has sufficient domain understanding
to extract useful signals from data, and is assumed
to have no or little programming experience. Given
a dataset, our framework enables the labeler to
label each record with a categorical label, while
providing their labeling rationales by interactively
marking relevant parts of the record and specifying
semantics and relationships among them. The out-
put is a labeling model, which is trained to automat-
ically produce labels for the large set of unlabeled
data.

The DPBD framework has four main compo-
nents. The labeler interacts with data via the label-
ing interface. The labeling interface records the
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labeler’s interaction and compiles the interaction
into a labeling rule. The synthesizer synthesizes
labeling rules and translates those chosen by the
labeler into program functions. Third, the selected
functions are passed to the modeler, which builds a
labeling model by optimally aggregating the gener-
ated functions. Until a certain stopping criterion is
met (e.g., reaching a desired model quality) or the
labeler decides to exit, the active sampler selects
the next data record to present the labeler.

2.1 Labeling Interface

The labeling interface is the workspace through
which the labeler interactively creates labeling fun-
tions. The affordances of the labeling interface
enable the labeler to express noisy explanations
or rationales for labeling decisions using a visual
interaction language, allowing her to incorporate
the domain knowledge in generating rules without
having to formalize it into computer programs or
natural language explanations.

Generalized Labeling Model Our framework de-
fines a generalized labeling model (GLM) to ab-
stract the common practices in labeling processes.
Inspired by the entity-relationship model [7] in
database modeling, GLM models the data records
with concepts and relationships. The GLM views
the data record as a series of tokens, where a token
is a continuous subset of a record with no seman-
tics attached. For example, in text data, a token can
be any span (single char to multiple words) of the
data record; in an image data record, it would be
a 2D region, rectangular or free form; and in an
audio data record, it would be a 1D window of the
data record (e.g., a phoneme).

A concept is a group of tokens that the labeler
believes share common semantics. For instance,
over text data, the labeler might define a concept
of positive adjectives consisting of a set of tokens,
each of which can imply a positive review. When
labeling audio data, the labeler might create a con-
cept to aggregate all clips that express excitement,
or of a specific speaker. This abstraction allows the
user to teach the GLM which generalizations are
relevant to the task.

A relationship represents a binary correlation
between token-token, token-concept, or concept-
concept. Some examples are membership (e.g., a
token is in a concept), co-existence (e.g., opinion
and aspect tokens), and positional (e.g., a person is
standing left to a table [14]).

Table 1: Mapping from GLM elements to operations in
the labeling interface.

GLM Element Operations
token select, assign_concept
concept create, add, delete
relationship link, direct_to

Mapping GLM Elements to Operations Given
the GLM specification described above, our frame-
work also defines the operations that can be applied
on GLM elements. Table 1 lists the GLM elements
and the corresponding operations.

The implementation of both the labeling inter-
face and the operations described in Table 1 would
vary across data types and token definitions. To
add expressivity, the GLM may also perform trans-
formations over the set of tokens, as we describe in
the next section.

Compiling Operations into Labeling Rules
Once the labeler finishes annotating an example
using the provided operations, and selects a label,
the tokens are extracted from the annotation and
used as the initial set of conditions from which to
build rules. The synthesizer combines these con-
ditions into labeling rules by selecting subsets of
the conditions to be combined with different con-
junctive formulas, according to the relationships
the user has annotated. The synthesizer extends
the initial set of labeling rules and presents the ex-
tended labeling rules for the labeler to select from,
choosing desired ones based on domain knowledge.

A labeling rule serves as an intermediate lan-
guage, interpretable by both the labeler and the
synthesizer. In our framework, we adapt the no-
tation of domain relational calculus [19] to rep-
resent these rules, which can be expressed as:
{tokens | conditions} = label. The vari-
able tokens is a sequence of tokens with exis-
tential quantification, and conditions is a con-
junctive formula over boolean predicates that are
tested over tokens on a data record. The predi-
cates are first-order expressions, and each can be
expressed as a tuple (7', lhs, op, rhs). T is an op-
tional transformation function on a token identifier,
a process of mapping the raw token to more gener-
alized forms. Some example transformations are
word lemmatization for text labeling, speech-to-
text detection in audio labeling, or object recogni-
tion in image labeling. lhs is a token, while rhs
can be either token, literal or a set. If rhs denotes



a token, the transformation function 7" may also
apply to rhs. op is an operator whose type de-
pends of the type of rhs. If rhs is a token or literal,
op detects a positional or an (in)equality relation-
ship. Otherwise, if rhs is a set, op is one of the
set operators {€, ¢}. Since the conditions is
in the conjunctive form, the order of the labeler’s
interactions does not matter.

Example: Consider the binary sentiment classifica-
tion (positive or negative) task on Amazon review
data [17]. Observe the following review:

This book was so great! I
loved and read it so many times
that I will soon have to buy a
new copy.

If the labeler thinks this data record has a positive
sentiment, she can express her decision rationale
using GLM. First, she may select two tokens that
are related to the sentiment: book and great. As-
sume there are two concepts the labeler previously
created: (1) item= {book, electronics};
and (2) padj= {wonderful}. The labeler re-
alizes the token great can be generalized by the
padj concept, which means that the labeling rule
will still be valid if this token is replaced by any
tokens in the concept, so she adds this token to the
concept.

Finally, the labeler creates a positional relation-
ship from book to token great to indicate that
they appear in the same sentence, before complet-
ing the labeling process. These operations compile
into the labeling rule r : {t1,t3 | t; = book Aty €
padj Addz(ty) < idx(te)} = positive. O

This rule is sent to the synthesizer for expansion
and program synthesis.

2.2 Synthesizer

Given the compiled labeling rule from the labeling
interface, the synthesizer extends one single label-
ing rule from labeler’s interaction to a set of more
general labeling rules; and translates those labeling
rules into computer programs. It is straightforward
to translate the rules into executable computer pro-
grams (labeling functions), so in this section, we
focus on how to synthesize the extended labeling
rules.

Given the labeling rule compiled from a labeler’s
interaction, the synthesizer generates more labeling
rules while optimizing two competing goals: maxi-
mizing generalization, so that more (unseen) data
can be accurately labeled; and maximizing the cov-

erage of the labeler’s interaction, simply because
labeler’s interaction is the most valuable signal for
labeling from domain knowledge. Of course, the
larger the set of annotations in an interaction, the
larger the set of labeling functions that can be syn-
thesized. To keep rule selection as easy as possible
for the user, in this case we prioritize rules that
cover more of the interaction, assuming that there
is little redundancy.

We achieve generalization of the given rules us-
ing the following heuristics: (1) substituting tokens
with concepts; (2) replacing general co-existence
relationships with position-specific ones; and (3)
applying the available transformations over the to-
kens (for example, object recognition in a section
of an image).

Once the extended rules are generated, the rules
are ranked by their generalization score—a mea-
surement of how applicable a certain rule is. We
define a data-independent generalization score for
alabeling rule 7 as: G(r) = [ [ ¢, conds |C-7hs|. In-
tuitively, G () is calculated by counting how many
different data instances that r can be used.

Example: Continuing with our Amazon review
example, the synthesizer can derive the following
labeling rules from r using these heuristics:

1. {t1,t2 | t1 € item Aty € padj} = positive

2. {ti,t2 | t1 € item Ata € padj A idx(t1) <
idz(t2)} = positive

3. {t1,t2 | t1 = book Atz € padj} = positive

Note that labeling rule (1) is more general than (2)
and (3) because all data records that can be labeled
by (2) and (3) will be labeled the same way using
labeling rule (1). U

The top-k candidates ranked by the generaliza-
tion score are displayed in the labeling interface for
the labeler to accept or reject.

2.3 Modeler

The modeler component trains a model that can be
used to automatically annotate unlabeled datasets.
Naively aggregating the labeling functions can be
inaccurate (since labeling functions can be conflict-
ing and correlated) or may not scale well with a
large set of unlabeled data [32]. Instead, the mod-
eler encapsulates the ideas from traditional data
programming [6, 32, 33] to first build a generative
model to denoise labeling functions, and then train
a discriminative model to leverage other features
beyond what are expressed by the labeling func-
tions.



Figure 3: RULER user interface. RULER synthesizes
labeling rules based on rationales expressed by users
by interactively marking relevant parts of the example
and specifying implied group or pairwise semantic re-
lations among them.

2.4 Active Sampler

To improve the model quality at faster rates, our
framework uses an active sampler to choose the
next data record for labeling. The active sam-
pler selects the data record z* with the high-
est entropy (i.e., the one that the labeling model
is currently the most uncertain about): z* =
arg max, — Z‘iu po(Li | x)logpe(L; | x) where
po(L; | x) is the probability that example z be-
longs to class L;, as predicted by the trained label
model.

3 Ruler

RULER is a web-based interactive system that
builds on the data programming by demonstra-
tion (DPBD) framework introduced above to fa-
cilitate easier labeled training data preparation for
document-level text classification models. For this,
RULER leverages span-level features and relations
in text documents demonstrated through visual in-
teractions by users (labelers), as formalized by the
DPBD framework. To begin a labeling task, the
data owner needs to upload their unlabelled dataset,
in addition to a small labeled development set, and
optionally a small test and validation set. This mir-
rors the data requirements of Snorkel, which the
underlying DPBD modeler encapsulates. In the rest
of this section, we discuss the user interface and in-
teractions of RULER along with its implementation
details in operationalizing DPBD for text.

3.1 User Interface and Interactions

Recall that the purpose of the labeling interface
in DPBD (Section 2.1) is to enable the labeler to
encode domain knowledge into rules through vi-
sual interaction. To this end, RULER interface pro-
vides affordances through 6 basic views (Figure 3),
which we briefly describe below—the letters A-F
refer to annotations in Figure 3.

Labeling Pane (A) is the main view where the
user interacts with document text. Labeling Pane
(Figure 4) shows contents of a single document
at a time and supports all the labeling operations
defined by the GLM in the context of text data.
The user can annotate spans either by highlighting
them directly with the cursor or adding them to
a concept. These spans can be linked together if
the relationship between them is significant to the
user. Once the user selects a document label (class)
from the options displayed, the system generates a
diverse set of labeling functions to suggest to the
user.

When | first saw the reviews for Ted, | think | groaned audibly.
)RDINAL RSON
After it was released, it got so many positive reviews, | thought
| should check it out. It tries so hard to be [}, but comes
across as and . | wanted to laugh, | really did. . .
but it just work for me. | was really bummed because |
like mark Wahlberg. | wasf{l all that familiar with Seth
PERSON PERSON

Macfarlane's other stuff. Now | am, and will probably steer

clear.

Figure 4: RULER Labeling Pane, where the user con-
veys domain knowledge using a visual interaction lan-
guage. Annotations are color coded by the concepts
they are assigned to.

Concepts Pane (B) allows users to create concepts,
add and edit tokens (whole words surrounded by
non-alphabetical characters) or regular expressions,
and see annotations over their text automatically
added when a match is found (Figure 5). This
interaction allows users to abstract away details
about specific language use by grouping tokens or
regular expressions into concepts.

Suggested Functions (C) shows the labeling func-
tions suggested by the system. The user can select
any functions that seem reasonable, and only then
are they added to the underlying labeling model
that is iteratively built.

Labeling Statistics (D) displays current statistics
of the label model computed over the development
set, and differential changes incurred by the last



it just doesn't work for me. | we
g A
like mark Wahlberg. | wasn't a
value type case : ity
never token « x| it just does(ghi work for me. | wa
; ike mark Wahlberg. | wasjgy al
nfo\]+ regexp ~ ~ PERSON

Figure 5: Left: Example concept created to capture
negation. Right: example text highlighting as concept
elements are matched in the text, and annotations cre-
ated once the element is submitted.

data interaction. Because this panel updates as the
user interacts, they can quickly explore the space
of labeling functions with a very low cost in terms
of time, computation, and human effort.

End-model Statistics (E) shows the performance
statistics for an end-discriminative model for which
the user intends to collect training data. For exam-
ple, in our user study we used a logistic regression
model with a bag of words features on the gener-
ated training data. This model is evaluated on the
small held-out test set, and statistics are shown in
this pane.

Selected Functions (F) lists of currently selected
labeling rules that make up the labeling model
along and shows each rule’s performance statistics
based on the development set. The user can click
to open a details panel showing observed incorrect
labels and sample texts labeled by this function.

3.2 Server and Model

RULER’s backend comprises the synthesizer (Sec-
tion 2.2), modeler (Section 2.3) and active sampler
(Section 2.4) components. The backend compo-
nents are all implemented in Python 3.6. In ad-
dition to the function generation defined in Sec-
tion 2.2, RULER’s synthesizer also augments label-
ing rules using existing text processing libraries.
It enhances the text with transformations that rec-
ognize named entity types such as person and
location, extracted using the spaCy library [2].
These annotations are made visible to the user, and
annotations containing named entities will gener-
ate functions that generalize to all instances of that
entity. In our implementation, relationships can
encompass co-occurrence in the same sentence as
well as in the document. RULER encapsulates the
Snorkel library [32] into its modeler to aggregate
the generated labeling functions.

4 Evaluation

We evaluate RULER alongside manual data pro-
gramming using Snorkel [32]. Our goal is to better
understand the trade-offs afforded by each method.
To this end, we conducted a user study with 10
data scientists and measured their task performance
accuracy in completing two labeling tasks. In ad-
dition to task performance, we also analyzed the
accessibility and expressivity of both methods us-
ing the qualitative feedback elicited from partic-
ipants and our observations gathered during the
study sessions.

In an initial pilot study we included a third condi-
tion, BabbleLabble [16], where users express label-
ing rationales in natural language which are then
parsed into labeling rules. Participants found Bab-
bleLabble to be limited both in terms of what pat-
terns could be expressed and how to express, as
they “tried to express it in a parsable sentence” and
faced errors. This leads us to believe that although
BabbleLabble may be suitable for high-volume ap-
proaches like crowd-sourcing, it can be frustrating
for a domain expert or lay user who is both provid-
ing the explanations and creating and debugging
the labeling model. Based on these observations,
we removed BabbleLabble from our evaluation.
Participants We recruited participants with
Python programming experience through our pro-
fessional network (none were involved in this
project). Note that RULER can be used by pro-
grammers and non-programmer domain experts
alike, but a fair comparison with Snorkel requires
proficiency in conventional programming. All par-
ticipants had significant programming experience
(avg=12.1 years, std=6.5). Their experience with
Python programming ranged from 2 to 10 years
with an average of 5.2 years (std=2.8).
Experimental Design We carried out the study us-
ing a within-subjects experimental design, where
all participants performed tasks using both condi-
tions (tools). The sole independent variable con-
trolled was the method of creating labeling func-
tions. We counterbalanced the order in which the
tools were used, as well as which classification task
we performed with which tool.

Tasks and Procedure We asked participants to
write labeling functions for two prevalent label-
ing tasks: spam detection and sentiment classifica-
tion. They performed these two tasks on YouTube
Comments and Amazon Reviews, respectively. Par-
ticipants received 15 mins of instruction on how to
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Figure 6: Performances of the classifier models trained
on the probabilistic labels generated by participants’ la-
beling models. Although manual programming allows
participants to use existing packages (e.g., sentiment
analysis packages), RULER performs comparably with
Snorkel in both tasks.

use each tool, using a topic classification task (elec-
tronics vs. guns) over a newsgroup dataset [1] as an
example. We asked participants to write as many
functions as they considered necessary for the goal
of the task. They were given 30 mins to complete
each task and we recorded the labeling functions
they created and these functions’ individual and ag-
gregate performances. After completing both tasks,
participants also filled out an exit survey, providing
their qualitative feedback.

For the manual programming condition, we it-
eratively developed a Jupyter notebook interface
based on the Snorkel tutorial. We provided a sec-
tion for writing functions, a section with diverse
analysis tools, and a section to train a logistic re-
gression model on the labels they had generated
(evaluated on the test set shown to the user, which
is separate from our heldout test set used for the
final evaluation).

5 Results

To analyze the performance of the labeling func-
tions created by participants, for each participant
we select and task the labeling model that achieved
the highest f1 score on the development set. For
each labeling model, we then train a logistic re-
gression model on a training dataset generated by
the model. We finally evaluate the performance
of the logistic regression model on a heldout test
set (400 examples). We also analyze the subjective
ratings provided by participants on a Likert scale
of 5 (1-5, higher is better) in their exit surveys. We
use the paired Wilcoxon signed rank test to assess
the significance of differences in prediction metrics
and subjective ratings between RULER and Snorkel.
We also report the effect size r for all our statistical
comparisons.

@ ruler ® snorkel

ease of use expressivity

—— —

ease of learning overall satisfaction

L Lo

1 2 3 4 5 1 2 3 4 5

Figure 7: Subjective ratings on ease of use, expressivity,
ease of learning and overall satisfaction, on a 5-point
Likert scale. Participants find RULER easier to use and
learn, while they consider manual data programming
using the Snorkel framework more expressive.

Model Performance We find that RULER and
Snorkel provide comparable model performances
(Figure 6). The logistic regression models trained
on data produced by labeling models created using
RULER have slightly higher f1 (W = 35, p = 0.49,
r = 0.24 ), precision (W = 30, p = 0.85,
r = 0.08), and recall (IW = 25, p = 0.85,
r = 0.08) scores on average. Conversely, accuracy
is slightly higher (W = 17, p = 0.32, r = 0.15)
for Snorkel models on average than RULER. How-
ever these differences are not statistically signifi-
cant.
Subjective Ratings and Preferences Participants
find RULER to be significantly easier to use (W =
34, p = 0.03 < 0.05, » = 0.72) than Snorkel
(Figure 7). Similarly, they consider RULER easier
to learn (W = 30, p = 0.1, r = 0.59) than Snorkel.
On the other hand, as we expected, participants
report Snorkel to be more expressive (W = 0,
p = 0.05, r = 0.70) than RULER. However, our
participants appear to consider accessibility (ease
of use and ease of learning) to be more important
criteria, rating RULER higher (W = 43, p = 0.12,
r = 0.51) than Snorkel for overall satisfaction.

When asked which tool they prefer overall, 2
users prefered Snorkel, 4 prefered RULER, and the
remaining 4 said it depends on the task and data.
If they wanted to get data quickly, or if the dataset
required a lot of domain-specific keywords, many
would opt for RULER, whereas Snorkel would be
useful given more time. One user summarized it
thus “Simple label function[s] that rely on key-
words are much easier and faster to write with
RULER. For both tasks, I did not write complex
label logic, so with the same time, I can write more
label functions with RULER.”

The reason users preferred Snorkel in certain sit-
uations was for added expressivity, yet interestingly



almost three-quarters (72.3%) of the functions that
users wrote in Snorkel could be captured through
RULER interactions. The types of functions not
captured included: those using Python sentiment
analysis packages, and functions that counted the
number of occurrences of a word, the length of the
text, or, in one case, the ratio of alphabetical charac-
ters. This suggests that even skilled programmers
can benefit from using both systems, using RULER
to more quickly capture domain specific concepts
and language use, and then manually adding func-
tions based on their new understanding of the data.

For the user who is not skilled at programming,
RULER is, to the best of our knowledge, the only
tool available to help leverage data programming
with full control over the functions. Our user study
shows that in addition to the benefit RULER pro-
vides to this group, it may even help skilled pro-
grammers save time and create better models, ei-
ther in conjunction with traditional programming
or alone.

6 Related Work

We build on earlier work in weak supervision, pro-
gramming by demonstration, and learning from
feature annotations provided by users.

Weak Supervision To reduce the cost of labeled
data collection, weak supervision methods lever-
age noisy, limited, or low precision sources such as
crowdsourcing [18], distant supervision [28], and
user-defined heuristics [12] to gather large train-
ing data for supervised learning. Data program-
ming [32, 33] is a programmatic approach to weak
supervision by heuristics, where functions provided
by domain experts to label subsets of a training
dataset are used to create training data at scale and
train ML models using probabilistic labels. RULER
aims to make data programming easier for docu-
ment classification tasks.

Program Synthesis by Demonstration Auto-
mated synthesis of programs that satisfy a given
specification is a classical artificial intelligence (Al)
problem [39]. Generating programs by examples or
demonstration is an instance of this problem. The
terms programming by example (PBE), or program-
ming by demonstration (PBD) have often been used
interchangeably, though their adoption and exact
meaning might diverge across fields and applica-
tions. There is a rich research literature of PBD
systems, which generate programs satisfying given
input-output examples, have been applied to auto-

mate various data analysis tasks [11]. PBD systems
aim to empower end user programming in order
to improve user productivity [4, 9, 21, 22, 29, 30].
One of the core research questions in PBD is how
to generalize from seen examples or demonstra-
tions. To generalize, PBD systems need to resolve
the semantic meaning of user actions over relevant
(e.g., data) items. Prior approaches incorporate a
spectrum of user involvement, from making no in-
ference (e.g., [13, 30]) to using Al models with no
or minimal user involvement, to synthesize a gen-
eralized program (e.g., [11, 20, 23, 26, 27]). Our
framework takes a hybrid approach within the spec-
trum above and combines inference and statistical
ranking along with interactive demonstration.
Learning from Feature Annotations Prior work
proposes methods for learning from user provided
features [10, 24, 31], rationales [5, 38, 40, 41], and
natural language explanations [16, 35]. BabbleLab-
ble [16] uses a rule-based parser to turn natural
language explanations into labeling functions and
aggregates these functions using Snorkel. RULER
also learns labeling functions from high level im-
precise explanations and aggregates them using
the Snorkel framework. However, RULER enables
users to supply their rationales through interactive
visual demonstrations, removing the cognitive load
to formulate them as programs or natural language
statements.

Ruler also shares design characteristics with ear-
lier information extraction systems for text (e.g.,
[3, 15]) that help users interactively create rules for
various extraction tasks. Ruler differs from these
systems in its motivation and target application,
learning labeling rules for document classification,
and its underlying data-type agnostic framework,
data programming by demonstration (DPBD).

7 Discussion

RULER prioritizes accessibility over expressivity.
Is this trade-off inevitable? The expressivity of
RULER can be enhanced by extended semantic and
syntactic analysis of the document context of user
demonstrations. Enabling manual revision of syn-
thesized labeling functions at multiple levels of
abstraction can be also useful. In this context, fur-
ther improving the expressivity of RULER through
use cases without diminishing its accessibility is
an important area of future research. Deriving ad-
ditional insights into how users with limited or
no programming proficiency would use RULER is



another area of future work, and open sourcing
RULER is a step forward in this direction. Future
research also includes developing fast search and
ranking algorithms and experimenting with differ-
ent active learning strategies to effectively search
and navigate the vast joint space of labeling func-
tions and data examples.

Although we focused on text document classifi-
cation here, a data programming by demonstration
(DPBD) system for image labeling, for example,
would use an implementation of GLM specific to
images. In this case, “tokens” would be 2D image
regions, relations between them could be speci-
fied semantically as well as spatially, and concepts
would be built with image tokens and matching
rules that could use a dictionary of basic (those
based on intensity statistics) and more involved im-
age descriptors such as LBP, HOG, SIFT, etc. [36].
While promising, details and viability of such a
DPBD system for image (or video) classification
tasks would require further investigation. By lay-
ing out the framework we hope to encourage future
work in this direction.

Accessibility is essential for wider adoption of
any technology and machine learning is no excep-
tion. In this paper we presented RULER, a DPBD
system for easily generating labeling functions to
create training datasets for document-level clas-
sification tasks. RULER converts user rationales
interactively expressed as span-level annotations
and relations to labeling rules using the DPBD
framework. DPDB is a general human-in-the-loop
framework that aims to ease writing labeling func-
tions, improving the accessibility and efficiency
of data programming. Through a user study with
10 data scientists performing real world labeling
tasks for classification, we evaluated RULER to-
gether with conventional data programming and
found that RULER enables more accessible data
programming without loss in the performance of
labeling models created. Results of our study also
suggested that, even for skilled programmers, the
majority of functions they write can be captured
more easily through visual interactions using our
system. We release RULER as an open source soft-
ware to support future applications and extended
research.
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