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ABSTRACT
While clustering is one of the most popular methods for data min-
ing, analysts lack adequate tools for quick, iterative clustering anal-
ysis, which is essential for hypothesis generation and data reason-
ing. We introduce Clustrophile, an interactive tool for iteratively
computing discrete and continuous data clusters, rapidly explor-
ing different choices of clustering parameters, and reasoning about
clustering instances in relation to data dimensions. Clustrophile
combines three basic visualizations – a table of raw datasets, a
scatter plot of planar projections, and a matrix diagram (heatmap)
of discrete clusterings – through interaction and intermediate vi-
sual encoding. Clustrophile also contributes two spatial interaction
techniques, forward projection and backward projection, and a vi-
sualization method, prolines, for reasoning about two-dimensional
projections obtained through dimensionality reductions.

Keywords
Clustering, projection, dimensionality reduction, visual analysis,
experiment, Tukey, out-of-sample extension, forward projection,
backward projection, prolines, sampling, scalable visualization, in-
teractive analytics.

1. INTRODUCTION
Clustering is a basic method in data mining. By automatically di-

viding data into subsets based on similarity, clustering algorithms
provide a simple yet powerful means to explore structures and vari-
ations in data. What makes clustering attractive is its unsupervised
(automated) nature, which reduces the analysis time. Nonetheless,
analysts need to make several decisions on a clustering analysis that
determine what constitutes a cluster, including which clustering al-
gorithm and similarity measure to use, which samples and features
(dimensions) to include, and what granularity (e.g., number of clus-
ters) to seek. Therefore, quickly exploring the effects of alternative
decisions is important in both reasoning about the data and making
these choices.

Although standard tools such as R or Matlab are extensive and
computationally powerful, they are not designed to support such
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interactive iterative analysis. It is often cumbersome, if not impos-
sible, to run what-if scenarios with these tools. In response, we in-
troduce Clustrophile, an interactive visual analysis tool, to help an-
alysts to perform iterative clustering analysis. Clustrophile couples
three basic visualizations, a dynamic table listing of raw datasets, a
scatter plot of planar projections, and a matrix diagram (heatmap)
of discrete clusterings, using interaction and intermediate visual en-
coding. We consider dimensionality reduction as a form of contin-
uous clustering that complements the discrete nature of standard
clustering techniques. We also contribute two spatial interaction
techniques, forward projection and backward projection, and a vi-
sualization method, prolines, for reasoning about two-dimensional
projections computed using dimensionality reductions.

2. RELATED WORK
Clustrophile builds on earlier work on interactive systems sup-

porting visual clustering analysis. The projection interaction and
visualization techniques in Clustrophile are related to prior efforts
in user experience with scatter-plot visualizations of dimensionality
reductions.

2.1 Visualizing Clusterings
Prior research applies visualization for improving user under-

standing of clustering results across domains. Using coordinated
visualizations with drill-down/up capabilities is a typical approach
in earlier interactive tools. The Hierarchical Clustering Explorer
[37] is an early and comprehensive example of interactive visual-
ization tools for exploring clusterings. It supports the exploration
of hierarchical clusterings of gene expression datasets through den-
drograms (hierarchical clustering trees) stacked up with heatmap
visualizations.

Earlier work also proposes tools that make it possible to incor-
porate user feedback into clustering formation. Matchmaker [28]
builds on techniques from [37] with the ability to modify cluster-
ings by grouping data dimensions. ClusterSculptor [30] and Cluster
Sculptor [8], two different tools, enable users to supervise cluster-
ing processes in various clustering methods. Schreck et al. [35]
propose using user feedback to bootstrap the similarity evaluation
in data space (trajectories, in this case) and then apply the cluster-
ing algorithm.

Prior work has also introduced techniques for comparing clus-
tering results of different datasets or different algorithms [10, 29,
34, 37]. DICON [10] encodes statistical properties of clustering
instances as icons and embeds them in the plane based on similar-
ity using multidimensional scaling. Pilhofer et al. [34] propose a
method for reordering categorical variables to align with each other
and thus augment the visual comparison of clusterings. The recent
tool XCluSim [29] supports comparison of several clustering re-
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Figure 1: Clustrophile is an interactive visual analysis tool for computing data clusters and iteratively exploring and reasoning about clustering
instances in relation to data subsets and dimensions through what-if scenarios. To this end, Clustrophile combines three basic visualizations,
a) a table of raw datasets, b) a scatter plot of planar projections, and c) a matrix diagram (heatmap) of discrete clusterings, using interaction
and intermediate visual encoding. Clustrophile enables users to interactively d) change the number of clusters, quickly explore several e)
projection and f) clustering algorithms and parameters, run g) statistical analysis, including hypothesis testing, and dynamically filter h) the
observations and i) features to which visual analysis is applied.

sults of gene expression datasets using an approach similar to that
of the Hierarchical Clustering Explorer.

Clustrophile is similar to earlier work in coordinating basic and
auxiliary visualizations to explore clusterings. Clustrophile focuses
on supporting iterative, interactive exploration of data with the abil-
ity to explore multiple choices of algorithmic parameters along
with hypothesis testing through visualizations and interactions as
well as formal statistical methods. Finally, Clustrophile is domain-
agnostic and is intended to be a general tool for data scientists.

2.2 Making Sense with and of Dimensionality
Reductions

Dimensionality reduction is a common method for analyzing and
visualizing high-dimensional datasets across domains. Researchers
in statistics and psychology pioneered the use of techniques that
project multivariate data onto low-dimensional manifolds for vi-
sual analysis (e.g., [2, 16, 15, 25, 38, 40]). PRIM-9 (Picturing,
Rotation, Isolation, and Masking — in up to 9 dimensions) [15]
is an early visualization system supporting exploratory data ana-
lyis through projections. PRIM-9 enables the user to interactively
rotate the multivariate data while continuously viewing a two di-
mensional projection of the data. Motivated by the user behavior

in the PRIM-9 system, Friedman and Tukey [16] first propose a
measure, the projection index, for quantifying the “usefulness” of a
given projection plane (or line) and, then, an optimization method,
the projection pursuit, to find the most useful projection direction
(i.e., one that has the highest projection index value). The proposed
index considers the projections that result in large spread with high
local density to be useful (e.g., highly separated clusters). In an ax-
iomatic approach that complements the projection pursuit, Asimov
introduces the grand tour, a method for viewing multidimensional
data via orthogonal projections onto a sequence of two-dimensional
planes [2]. Asimov considers a set of criteria such as density, con-
tinuity, and uniformity to select a sequence of projection planes
from all possible projection planes and provides specific methods
to devise such sequences. Note that the space of all possible two-
dimensional planes through the origin is a Grassmannian manifold.
Asimov’s grand tours can be seen as geodesic curves with desired
properties in this manifold.

Despite their wide use (and overuse), interpreting and reasoning
about dimensionality reductions can often be difficult. Earlier work
focuses on better conveying projection (reduction) errors, integrat-
ing user feedback into the projection process and evaluating the ef-
fectiveness of various dimensionality reductions. Low-dimensional



Figure 2: (Left) ANOVA test on calories between two selected clusters in a life style dataset. (Right) Correlation coefficients for all pairs of
features in a development indicators dataset [31] for OECD member states. Correlation values are sorted based on their absolute value. The
sign of correlation is encoded by color.

projections are generally lossy representations of the data relations.
Therefore, it is useful to convey both overall and per-point dimen-
sionality reduction errors to users when desired. Earlier research
proposes techniques for visualizing projection errors using Voronoi
diagrams [3, 26] and “correcting” them within a neighborhood of
the probed point [11, 39]. Stahnke et al. [39] suggest a set of in-
teractive methods for interpreting the meaning and quality of pro-
jections visualized as scatter plots. The methods make it possible
to see approximation errors, reason about positioning of elements,
compare them to each other, and visualize the extrapolated density
of individual dimensions in the projection space.

In certain cases, expert users have prior knowledge of how the
projections should look. To enable user input to guide dimension-
ality reduction, earlier research has proposed several techniques [9,
13, 17, 20, 21, 44]. Enabling users to adjust the projection posi-
tions or the weights of data dimensions and distances is a common
approach in earlier research for incorporating user feedback to pro-
jection computations. For example, X/GGvis [9] supports chang-
ing the weights of dissimilarities input to the MDS stress function
along the with the coordinates (configuration) of the embedded
points to guide the projection process. Similarly, iPCA [20] en-
ables users to interactively modify the weights of data dimensions
in computing projections. Endert et al. [14] apply similar ideas
to an additional set of dimensionality-reduction methods while in-
corporating user feedback through spatial interactions. The spa-
tial interactions, forward projection and backward projection, that
we introduce here are developed for dynamically reasoning about
dimensionality-reduction methods and the underlying data, not for
incorporating user feedback.

Prior research also evaluates dimensionality-reduction tech-
niques [7, 27] as well as visualization methods for represent-
ing dimensionally-reduced data [36]. Sedlmair et al. find that
two-dimensional scatter plots outperform scatter-plot matrices and
three-dimensional scatter plots in the task of separating clus-
ters [36]. Lewis et al. [27] report that experts are consistent in
evaluating the quality of dimensionality reductions obtained by dif-
ferent methods, but novices are highly inconsistent in such evalua-
tions. A later study finds, however, that experts with limited expe-
rience in dimensionality reduction also lack clear understanding of
dimensionality-reduction results [7].

Forward projection, backward projection and prolines are new
techniques and complement earlier work in improving interactive
reasoning with dimensionality reductions, particularly in order to

facilitate dynamically asking and answering hypothetical questions
about both the underlying data and the dimensionality reduction.

3. THE DESIGN OF CLUSTROPHILE
We developed Clustrophile for data scientists, using their regular

feedback at each stage of the development process. We discuss
below the design of Clustrophile, stressing the rationale behind our
choices, basic visualizations and interactions.

3.1 Design Criteria
In our collaboration with data scientists, we identified four high-

level criteria to consider in designing Clustrophile.
Show Variation Within Clusters Clustering is useful for

grouping data points based on similarity, enabling users to dis-
cover salient structures in data while reducing the cognitive
load. However, differences among data points within clusters are
lost. Clustrophile has coordinated views—Table, Projection, and
Clustering—that facilitate exploration of differences among data
points at different levels of granularity. The projection view holds
a scatter-plot visualization of the data reduced to two dimensions
through dimensional reduction, thus providing a continuous spatial
view of similarities among high-dimensional data points.

Allow Quick Iteration over Parameters In clustering analy-
sis, users typically need to make several decisions, including which
clustering method and distance (dissimilarity) measure to use, how
many clusters to create, which features and data subsets to con-
sider, and the like. After an initial clustering, users would like to be
able to iterate on and refine these decisions. Clustrophile enables
users to interactively update and apply clustering and projection
algorithms and parameters at any point in their analysis.

Facilitate Reasoning about Clustering Instances Users often
would like to know what features (dimensions) of the data points
are important in determining a given clustering instance or how
different choices of features or distance measures might affect the
clustering. Clustrophile allows users to add/remove features inter-
actively and to change distance measures used in clustering and
projections.

Promote Multiscale Exploration The ability to interactively
drill down into data is crucial for exploration and effective use of
visual encoding variables, particularly in two-dimensional space.
Clustrophile supports dynamic filtering of data across the views.
In addition, Clustrophile makes possible the application of cluster-
ing and projection methods to filtered subsets of data, providing a
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Figure 3: Forward projection enables users to a) select any data
point x in the projection, b) interactively change the feature (di-
mension) values of the point and c) observe how that changes the
current projected location y of the point. For PCA, the positional
change vector ∆y can be derived directly by projecting the data
change vector ∆x onto the first two principal components, e0 and
e1.

semantic zoom-in and zoom-out capability.

3.2 Views
Clustrophile has five coordinated views: Table, Projection, Clus-

tering, Statistics and Playground.
Table The Table view (Figure 1a) contains a dynamic table visu-

alization of data. Tables in Clustrophile can be searched, filtered,
sorted, and exported as needed (Figure 1h,i). Upon loading, data
first appears as a table listing in this view, giving users a direct and
familiar way to access the records. Clustrophile supports input files
in the Comma Separated Values (CSV) format. Clustrophile also
enables exporting the current table in CSV, Portable Document For-
mat (PDF), or Excel file formats. Alternatively, users can simply
the current table to the clipboard to paste in other applications.

Clustering The Clustering view (Figure 1c) contains a heatmap
(matrix diagram) visualization of the current clustering. The
columns of the heatmap corresponds to the number of clusters
and are ordered from left to right based on size (i.e., the first
column represents the largest cluster in the current clustering).
The rows of the heatmap represent the features, and the color of
each cell encodes the normalized average feature value for clus-
ters. Clustrophile supports dynamic computation of clusterings us-
ing the kmeans and agglomerative clustering algorithms with sev-
eral choices of similarity measures and, in the case of agglomer-
ative clustering, linkage options (Figure 1f). The choices can be
changed easily and clustering can be recomputed using the model
panel above the clustering view. Similarly, users can dynamically
change the number of clusters by using a sliding bar (Figure 1d).

Projection Clustering algorithms divide data into discrete
groups based on similarity, but different degrees of variation within
and between groups are suppressed. Clustrophile provides two-
dimensional projections obtained using dimensionality reduction
that complement the discrete clusterings. The Projection view (Fig-
ure 1b) contains a scatter-plot visualization of the current data
reduced to two dimensions by using one of six dimensionality-
reduction methods: Principal Component Analysis (PCA), Clas-
sical Multidimensional Scaling (CMDS), non-metric Multidimen-
sional Scaling (MDS), Isomap, Locally Linear Embedding (LLE),
and t-distributed Stochastic Neighbor Embedding (t-SNE) [42]. As
with clustering, users can select among several similarity measures
with which to run the projection algorithms (Figure 1e). Each cir-
cle in the scatter plot represents a data point and their color encodes
their cluster membership in the currently active clustering method.
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b

PortugalKorea
Japan

Turkey

Mexico
Chile

Italy

Spain

Figure 4: Forward projection in action. Forward projection en-
ables user to explore if and how much StudentSkills explains the
difference between Portugal and Korea in a projection of OECD
member countries based on a set of development indices. The user
a) dynamically changes the value of the StudenSkills dimension
for Portugal and b) observes the dynamically updated projection.
In this case, user discovers that StudentSkills is the most important
feature explaining the difference between Portugal and Korea.

Statistics This view displays the results of the most recent sta-
tistical computation. Currently, Clustrophile provides standard
point statistics along with a hypothesis-testing functionality using
ANOVA and pairwise correlation computations between features
(Figure 2).

Playground Clustrophile enables the exploration of two- di-
mensional projections of the data through forward and backward
projections. In the Playground view, users can create a copy of
an existing data point and interactively modify its feature values
to see how its projected position changes. Conversely, users can
change the projected position and see what feature values satisfy
this change.

3.3 Interactions
Brushing and Linking. We use brushing & linking to select

data across and coordinate the views of Clustrophile. This is the
main mechanism that lets users observe the effects of one operation
across the views.

Dynamic filtering In addition to brushing, Clustrophile provides
two basic mechanisms for dynamically filtering data (Figure 1h).
First, its search functionality lets users filter the data using arbi-
trary keyword search on feature names and values. Second, users
can also filter the table using expressions in a mini-language. For
example, typing age > 40 & weight<180 dynamical selects data
points across views where the fields age and weight satisfy the en-
tered constraint.

Adding and Removing Features Understanding the relevance
of data dimensions or features to the analysis is an important yet
challenging goal in data analysis. Clustrophile enables users to
add and remove features (dimensions) and explore the resulting
changes in clustering and projection results (Figure 1i).

3.4 Interacting with Dimensionality Reduc-
tions

Dimensionality reduction is the process of reducing the number
of dimensions in a high-dimensional dataset in a way that maxi-
mally preserves inter-datapoint relations of some form as measured
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Figure 5: Prolines visualize paths of forward projections. For a
given feature xi of a data point x, we construct a proline by connect-
ing the forward projections of the points regularly sampled from a
range of x values, where all features are fixed but xi changes from
xi−kσi to xi +kσi. σi is the standard deviation of the ith feature in
the dataset and k, c are constants controlling respectively the extent
of the range and the step size with which we iterate over the range.

in the original high-dimensional space. As with clustering, most
dimensionality-reduction techniques are unsupervised and learn
salient structures explaining the data. Unlike clustering, however,
dimensionality-reduction methods discover continuous representa-
tions of these structures.

Despite its ubiquitous use, dimensionality reduction can be diffi-
cult to interpret, particularly in relation to original data dimensions.
What do the axes mean? is probably users’ most frequent question
when looking at scatter plots in which points (nodes) correspond
to dimensionally-reduced data. Clustrophile integrates forward
projection, backward projection, and prolines to facilitate direct,
dynamic examination of dimensionality reductions represented as
scatter plots.

There are many dimensionality-reduction methods [42] and
developing effective and scalable dimensionality-reduction algo-
rithms is an active research area. Here we focus on princi-
pal component analysis (PCA), one of the most frequently used
dimensionality-reduction techniques; note that the discussion here
applies as well to other linear dimensionality-reduction methods.
PCA computes (learns) a linear orthogonal transformation (high-
dimensional rotation) of the empirically centered data into a new
coordinate frame in which the axes represent maximal variability.
The orthogonal axes of the new coordinate frame are called prin-
cipal components. To reduce the number of dimensions to two,
for example, we project the centered data matrix, rows of which
correspond to data samples and columns to features (dimensions),
onto the first two principal components, e0 and e1. Details of PCA
along with its many formulations and interpretations can be found
in standard textbooks on machine learning or data mining (e.g., [5,
18]).

3.5 Forward Projection
Forward projection enables users to interactively change the fea-

ture or dimension values of a data point, x, and observe how these
hypothesized changes in data modify the current projected loca-
tion, y (Figures 3,4). This is useful because understanding the im-
portance and sensitivity of features (dimensions) is a key goal in
exploratory data analysis.

We compute forward projections using out-of-sample extension
(or extrapolation) [42]. Out-of-sample extension is the process of
projecting a new data point into an existing projection (e.g., learned
manifold model) using only the properties of the projection. It is
conceptually equivalent to testing a trained machine learning model

StudentSkillsEducationAttainment

SelfReportedHealth

WorkingLongHours

Figure 6: Prolines for Portugal in a PCA projection of OECD mem-
ber countries based on their values for a set of development indices.
Prolines will be straight lines for linear dimensionality-reduction
methods. In addition, the length of each path corresponds to the
speed (sensitivity, variability) along the corresponding dimension.
For example, StudentSkills is the most sensitive feature determin-
ing the projection in this case. Note that forward projection ani-
mates the speed of the change along prolines, giving the user an
additional cue about the importance of the dimension in the projec-
tion.

with data that was not part of training.
In the case of PCA, we obtain the two-dimensional position

change vector ∆y by projecting the data change vector x′ onto the
principal components: ∆y = ∆x E, where E =

[
e0 e1

]
.

3.6 Prolines: Visualizing Forward Projec-
tions

It is desirable to see in advance what forward projection paths
look like for each feature. Users can then start inspecting the di-
mensions that look interesting or important.

Prolines visualize forward projection paths based on a range of
possible values for each feature and data point (Figures 5, 6). Let xi
be the value of the ith feature for the data point x. We first compute
the standard deviation σi for the feature in the dataset and devise a
range I =

[
xi− kσi, xi + kσi

]
. We then iterate over the range with

a step size of cσi, compute the forward projections as discussed
above, and then connect them as a path. The constants k, c control
respectively the extent of the range and the step size with which we
iterate over the range.

Prolines will be straight lines for linear dimensionality-reduction
methods (Figure 6), and therefore computing forward projections
only for the extremum values of the range I is sufficient. Also note
that in the case of PCA projections prolines reduces to plotting the
contributions of the feature to the principal components (loadings)
as a line vector.

3.7 Backward Projection
Backward projection as an interaction technique is a natural com-

plement of forward projection. Consider the following scenario: a
user looks at a projection and, seeing a cluster of points and a sin-
gle point projected far from this group, asks what changes in the
feature values of the outlier point would bring the apparent outlier
near the cluster. Now, the user can play with different dimensions
using forward projection to move the current projection of the out-
lier point near the cluster. It would be more natural, however, to
move the point directly and observe the change (Figures 7, 8, 9).
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Figure 7: Through backward projection, users can a) select a node
in the projection that corresponds to a data point x, b) directly move
the node in any direction and c) dynamically observe what data
changes ∆x would satisfy the hypothesized change ∆y in the pro-
jected position. In PCA projections, ∆x can be obtained by solving
for it in the linear equation ∆x [e0 e1] = ∆y.
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Figure 8: Unconstrained backward projection. A user, curious
about the projection difference between Turkey and Greece, a)
moves the proxy node for Turkey (gray square with dashed bor-
der) towards Greece. The feature values for Turkey are automat-
ically updated to satisfy the new projected position as the node
is moved. The user b) observes that, as Turkey gets closer to
Greece, WorkingLongHours decreases (encoded with red) while
EducationAttainment, StudentSkills, YearsInEducation, Life-
Expectancy, SelfReportedHealth, and LifeSatisfaction increase
(green). TimeDevotedToLeisure (not seen) stays constant (gray).

The formulation of backward projection is the same as that of
forward projection: ∆y = ∆x E. In this case, however, ∆x is un-
known and we need to solve the equation.

As formulated, the problem is underdetermined and, in gen-
eral, there can be infinitely many data points (feature values) that
project to the same planar position. Therefore, our implementation
in Clustrophile supports both unconstrained and constrained back-
ward projections. Users can introduce equality as well as inequality
constraints (Figure 10).

In the case of unconstrained backward projection, we find ∆x by
solving a regularized least-squares optimization problem.

minimize
∆x

‖∆x‖2

subject to ∆x E = ∆y

Note that this is equivalent to setting ∆x = ∆y ET . In general, for
linear projections we have the unconstrained back projection di-
rectly.

As for constrained backward projection, we find ∆x by solving

Portugal
KoreaJapan

Turkey

MexicoChileItaly
Spain

a

b

Figure 9: Constrained backward projection. A user explores
the projection difference between Portugal and Korea, first fixing
(i.e., setting equality constraints) all dimensions but EducationAt-
tainment, StudentSkills, YearsInEducation, LifeSatisfaction and
then a) moving the proxy node for Portugal nearer to Korea. The
user b) observes that LifeSatisfaction decreases while Education-
Attainment, StudentSkills, and YearsInEducation increase.

Figure 10: Clustrophile interface for entering inequality constraints
for backward projection. Users can enter bounded, left and right
bounded interval constraints. The histogram shows the distribution
of the future (bmi, body mass index, in this case) for which the
constraints are entered. The user can adjust the constraints interac-
tively using the histogram brush or the slider.

the following quadratic optimization problem:

minimize
∆x

‖∆x E−∆y‖2

subject to C∆x = d
lb≤ ∆x≤ ub

C is the design matrix of equality constraints, d is the constant
vector of equalities, and lb and ub are the vectors of lower and
upper boundary constraints.

3.8 System Details
Clustrophile is a web application based on a client-server model

(Figure 11). We implemented Clustrophile’s web interface in
Javascript with help of D3 [6] and AngularJS [1] libraries. We
generated the parser for the mini-language used to filter data with
PEG.js [33]. Most of the analytical computations are performed on
Clustrophile’s Python-based analytics server, which has four mod-
ules: clustering, projection, statistics, and solver. These modules
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Figure 11: Clustrophile architecture.

are mainly wrappers, making heavy use of SciPy [22], NumPy [43],
and scikit-learn [32] Python libraries. The solver module uses
CVXOPT [12] for quadratic programming.

4. USER FEEDBACK
Clustrophile is a research prototype under development and has

been used over several months by data scientists and researchers
in the healthcare domain. While we have not conducted a formal
study, we briefly discuss the informal feedback we have gathered.

Users cared most about the time-saving aspects of Clustrophile.
They were pleased with the ability to explore different clustering
and projection algorithms and parameters without going back to
their scripts. Similarly, among Clustrophile’s favorite functionali-
ties were the ability to add and remove features and iteratively re-
compute clusterings and projections on filtered data while staying
in the context of data analysis session. We found that our users were
more familiar with clustering than projection; indeed, for some the
relation between clustering and projection view was not always
clear.

The most important request from our users was scalability. As
soon as they started using Clustrophile in commercial projects, they
realized that they wanted to be able to analyze large datasets with-
out losing Clustrophile’s current interactive and iterative user expe-
rience (more on this in the following section).

5. SAMPLING FOR SCALE
The power of visual analysis tools such as Clustrophile comes

from both facilitating iterative, interactive analysis and leverag-
ing visual perception. Exploring large datasets at interactive rates,
which typically involves coordination of multiple visualizations
through brushing and linking and dynamic filtering, is, however,
a challenging problem. One source of the challenge is the cost
of interactive computation and rendering. Another is the percep-
tual and cognitive cost (e.g., clutter) users incur when dealing with
large numbers of visual elements.

There are two basic approaches to this problem: precomputation
and sampling [19]. Precomputation involves processing data into a
form (typically tiles or cubes) to interactively answer queries (e.g.,
zooming, panning, brushing, etc.) that are known in advance. This
approach has been the prevalent method both in the visualization
community and the database community, from which most of the
current techniques originate from. However, precomputation is not
always feasible or, indeed, desirable. Scalable visualization tools
based on precomputation are typically applied to the visualization
of low-dimensional, spatial (e.g., map) datasets as precomputation
is infeasible when the data is high dimensional, quickly expanding
the combinatorial space of possible cubes or tiles. And, in general,
precomputation is inflexible as it restricts the ability to run arbitrary
queries.

Sampling, considering only a selected subset of the data at a time
for analysis, is an attractive alternative to precomputation for scal-
ing interactive visual analytics tools. Sampling has generality and
the advantage of easing computational and perceptual/cognitive
problems at once. In principle, there is no reason that sampling-
based visual analysis should not be a viable and practical option.
In the end, the field of statistics builds on the premise that one can
infer properties of a population (read complete data) from its sam-
ples. There are, however, two major challenges that, we believe,
also limit wider adoption of sampling in general [19].

First is a concern about potential biases introduced by sampling.
This concern seems, however, to be at least partly unfounded, since
neither aggregation bias of precomputation nor sampling bias of
complete data appear to cause as much concern. In recent work,
Kim et al. improve the effectiveness (and trustworthiness) of
sampling-based visualizations by guaranteeing the preservation of
relations (e.g., ranking) within the complete data [24]. The sec-
ond challenge is the lack of understanding how users interact with
sampling in visual analytics tools or how sampling affects the user
experience and comprehension. Can we develop models of user
behavior regarding sampling? How can we improve the user expe-
rience with sampling through visualization and interaction? How
can users control the sampling process without being experts in
statistics?

Addressing these challenges would accelerate the adoption of
sampling and improve the utilization of the unique opportunity
that sampling provides in enabling visual analysis on large datasets
without losing the power of iterative, interactive visual-analysis
workflow that tools like Clustrophile facilitate.

6. REFLECTIONS ON PROJECTIONS
Using out-of-sample extrapolation, forward projection avoids re-

running dimensionality-reduction algorithms. From the visualiza-
tion point of view, this is not just a computational convenience but
also has perceptual and cognitive advantages such as preserving the
constancy of scatter-plot representations. For example, re-running
(training) a dimensionality-reduction algorithm with addition of a
new sample can significantly alter a two-dimensional scatter plot
of the dimensionally-reduced data, despite all the original inter-
datapoint similarities stay unchanged. Many of the dimensionality-
reduction algorithms are based on eigenvector computations. Even
different runs on the same dataset can result in different—typically,
flipped—planar coordinates (if v is an eigenvector of a matrix so is
−v ).

What about interacting with nonlinear dimensionality reduc-
tions? There are out-of-sample extrapolation methods for many
nonlinear dimensionality-reduction techniques that make the exten-
sion of forward projection with prolines possible [4]. As for back-
ward projection, its computation will be direct in certain cases (e.g.,
when an autoencoder is used). In general, however, some form of
constrained optimization specific to the dimensionality-reduction
algorithm will be needed. Nonetheless, it is highly desirable to de-
velop general methods that apply across dimensionality-reduction
methods.

7. VISUAL ANALYSIS IS LIKE DOING EX-
PERIMENTS

Data analysis is an iterative process in which analysts essentially
run mental experiments on data, asking questions and (re)forming
and testing hypotheses. Tukey and Wilk [41] were among the first
to observe the similarities between data analysis and doing exper-
iments. They list eleven similarities, for example, “Interaction,



feedback, trial and error are all essential; convenience dramatically
helpful.” Albeit often implicitly, the visualization literature makes
a strong case for designing visual analysis tools to support quick,
iterative analysis flow that is conducive to hypothesis generation
and testing (e.g., [23]).

We integrate our spatial interaction techniques for exploring and
reasoning with dimensionality reductions into Clustrophile, which
uses familiar data-mining and visualization methods to facilitate it-
erative, interactive clustering analysis. Injecting new techniques
into familiar workflows is an effective way for assessing their use-
fulness and adoption. Tukey and Wilk make an important obser-
vation on the adoption of new techniques as part of their analogy:
“There can be great gains from adding sophistication and ingenu-
ity . . . to our kit of tools, just as long as simpler and more obvious
approaches are not neglected.”

It is a standard practice to design visualization tools by consider-
ing criteria determined to support user tasks. While this approach
is necessary for creating useful tools, our experience in develop-
ing Clustrophile suggests that the design process can benefit from
the regulating clarity of general, higher-level conceptual models.
To explore and reason about data, analysts generally have the ba-
sic data-mining and visualization techniques. They often, how-
ever, lack interactive tools integrating these techniques to facilitate
quick, iterative what-if analysis. Extending Tukey and Wilk’s anal-
ogy between data analysis and running experiments to visual anal-
ysis, visual analysis like doing experiments, provides a useful con-
ceptual model for a large segment of visual analytics applications.
Clustrophile, along with forward projection, backward projection
and prolines, contributes to the kit of tools needed to facilitate per-
forming visual analysis in a similar way to running experiments.
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